Background: Coronary restenosis after percutaneous coronary intervention (PCI) still remains a significant limitation of the procedure. The causative mechanisms of restenosis have not yet been fully identified. The goal of the current study was to perform gene-set analysis of biological pathways related to inflammation, proliferation, vascular function and transcriptional regulation on coronary restenosis to identify novel genes and pathways related to this condition.
View Article and Find Full Text PDFBackground: Coronary restenosis after percutaneous coronary intervention still remains a significant problem, despite all medical advances. Unraveling the mechanisms leading to restenosis development remains challenging. Many studies have identified genetic markers associated with restenosis, but consistent replication of the reported markers is scarce.
View Article and Find Full Text PDFPercutaneous coronary intervention (PCI) has become an effective therapy to treat obstructive coronary artery diseases (CAD). However, one of the major drawbacks of PCI is the occurrence of restenosis in 5-25% of all initially treated patients. Restenosis is defined as the re-narrowing of the lumen of the blood vessel, resulting in renewed symptoms and the need for repeated intervention.
View Article and Find Full Text PDFWe performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis identified 13 loci newly associated with CAD at P < 5 × 10⁻⁸ and confirmed the association of 10 of 12 previously reported CAD loci. The 13 new loci showed risk allele frequencies ranging from 0.
View Article and Find Full Text PDFBackground: The cyclin-dependent kinase inhibitor p27(kip1) is a key regulator of smooth muscle cell and leukocyte proliferation in vascular disease, including in-stent restenosis. We therefore hypothesized that common genetic variations or single nucleotide polymorphisms in p27(kip1) may serve as a useful tool in risk stratification for in-stent restenosis.
Methods And Results: Three single nucleotide polymorphisms concerning the p27(kip1) gene (-838C>A, rs36228499; -79C>T, rs34330; +326G>T, rs2066827) were determined in a cohort of 715 patients undergoing coronary angioplasty and stent placement.
We sampled teeth from 53 ancient Sardinian (Nuragic) individuals who lived in the Late Bronze Age and Iron Age, between 3,430 and 2,700 years ago. After eliminating the samples that, in preliminary biochemical tests, did not show a high probability to yield reproducible results, we obtained 23 sequences of the mitochondrial DNA control region, which were associated to haplogroups by comparison with a dataset of modern sequences. The Nuragic samples show a remarkably low genetic diversity, comparable to that observed in ancient Iberians, but much lower than among the Etruscans.
View Article and Find Full Text PDFCattle domestication from wild aurochsen was among the most important innovations during the Neolithic agricultural revolution. The available genetic and archaeological evidence points to at least two major sites of domestication in India and in the Near East, where zebu and the taurine breeds would have emerged independently. Under this hypothesis, all present-day European breeds would be descended from cattle domesticated in the Near East and subsequently spread during the diffusion of herding and farming lifestyles.
View Article and Find Full Text PDFBackground: Myotragus balearicus was an endemic bovid from the Balearic Islands (Western Mediterranean) that became extinct around 6,000-4,000 years ago. The Myotragus evolutionary lineage became isolated in the islands most probably at the end of the Messinian crisis, when the desiccation of the Mediterranean ended, in a geological date established at 5.35 Mya.
View Article and Find Full Text PDF