Degenerative cartilage pathologies are nowadays a major problem for the world population. Factors such as age, genetics or obesity can predispose people to suffer from articular cartilage degeneration, which involves severe pain, loss of mobility and consequently, a loss of quality of life. Current strategies in medicine are focused on the partial or total replacement of affected joints, physiotherapy and analgesics that do not address the underlying pathology.
View Article and Find Full Text PDFA useful technique for culturing cells in a self-assembling nanofiber three-dimensional (3D) scaffold is described. This culture system recreates an environment that closely mimics the structural features of non-polarized tissue. Furthermore, the particular intrinsic nanofiber structure of the scaffold makes it transparent to visual light, which allows for easy visualization of the sample under microscopy.
View Article and Find Full Text PDFCartilage injury and degenerative tissue progression remain poorly understood by the medical community. Therefore, various tissue engineering strategies aim to recover areas of damaged cartilage by using non-traditional approaches. To this end, the use of biomimetic scaffolds for recreating the complex in vivo cartilage microenvironment has become of increasing interest in the field.
View Article and Find Full Text PDFAdult articular cartilage has a limited capacity for growth and regeneration and, with injury, new cellular or biomaterial-based therapeutic platforms are required to promote repair. Tissue engineering aims to produce cartilage-like tissues that recreate the complex mechanical and biological properties found . In this study, a unique composite scaffold was developed by infiltrating a three-dimensional (3D) woven microfiber poly (ε-caprolactone) (PCL) scaffold with the RAD16-I self-assembling nanofibers to obtain multi-scale functional and biomimetic tissue-engineered constructs.
View Article and Find Full Text PDFThe use of chondrocytes in cell-based therapies for cartilage lesions are limited by quantity and, therefore, require an in vitro expansion. As monolayer culture leads to de-differentiation, different culture techniques are currently under development to recover chondrocyte phenotype after cell expansion. In the present work, we studied the capacity of the bimolecular heparin-based self-assembling peptide scaffold (RAD16-I) as a three-dimensional (3D) culture system to foster reestablishment of chondrogenic phenotype of de-differentiated human Articular Chondrocytes (AC).
View Article and Find Full Text PDFThe prolonged ischemia after myocardial infarction leads to a high degree of cardiomyocyte death, which leads to a reduction of normal heart function. Valuable lessons can be learnt from human myocardium and stem cell biology that would help scientists to develop new, effective, safe, and affordable regenerative therapies. In vivo models are of high interest, but their high complexity limits the possibility to analyze specific factors.
View Article and Find Full Text PDFOne major goal of tissue engineering is to develop new biomaterials that are similar structurally and functionally to the extracellular matrix (ECM) to mimic natural cell environments. Recently, different types of biomaterials have been developed for tissue engineering applications. Among them, self-assembling peptides are attractive candidates to create artificial cellular niches, because their nanoscale network and biomechanical properties are similar to those of the natural ECM.
View Article and Find Full Text PDF