Silicon (Si) is the second most abundant element in the Earth's crust after oxygen. Its beneficial impact on crop development and yield, particularly under stressful conditions such as iron (Fe) deficiency, has been well documented. Fe deficiency is a critical constraint that limits crop production globally.
View Article and Find Full Text PDFIntroduction: A sustainable agriculture and the great increase in consumers of organic products in the last years make the use of natural products one of the main challenges of modern agriculture. This is the reason that the use of products based on seaweed extracts has increased exponentially, specifically brown seaweeds, including Ascophyllum nodosum and Ecklonia maxima.
Methods: In this study, the chemical composition of 20 commercial seaweed extract products used as biostimulants and their antifungal activity against two common postharvest pathogens (Botrytis cinerea and Penicillium digitatum) from fruits were evaluated.
Background: Seed germination and seedling growth constitute the first stage of a plant's life cycle for crop establishment. Arthrocnemum Moq. is a halophyte of the subfamily Salicornioideae (Amaranthaceae), which could be recognized in the foreseeable future as an emerging candidate in applied biosaline agricultural programs, mainly due to the large biomass it represents in coastal and inland saltmarshes, in addition to its interesting nutritional and pharmacological properties.
View Article and Find Full Text PDFA direct and simple fluorescent assay for the total polyphenol determination based on the bioconjugate formed between the laccase enzyme (TvL from Trametes versicolor) and carbon nanodots (CD) is developed. One of the most used reactions for the determination of phenols is based on the enzymatic reaction of their oxidation to quinones. In this work, CD has been biofunctionalized with TvL (TvL-CD) and employed as a fluorescent label to follow the enzymatic reaction.
View Article and Find Full Text PDFPriming consists of a short pretreatment or preconditioning of seeds or seedlings with different types of primers (biological, chemical, or physical), which activates various mechanisms that improve plant vigor. In addition, stress responses are also upregulated with priming, obtaining plant phenotypes more tolerant to stress. As priming is thought to create a memory in plants, it is impairing a better resilience against stress situations.
View Article and Find Full Text PDFZinc (Zn) is an essential micronutrient involved in a large variety of physiological processes, and its deficiency causes mainly growth and development disturbances, as well as oxidative stress, which results in the overproduction and accumulation of reactive oxygen species (ROS). A possible environmentally friendly solution is the application of silicon (Si), an element that has shown beneficial effects under abiotic and biotic stresses on many crops. Si could be applied through the roots or leaves.
View Article and Find Full Text PDFIt has been described in rice that Si only plays a physical barrier that does not allow Fe to enter cell apoplast, causing Fe deficiency responses even under Fe sufficiency growth conditions. Most of the conclusions were attained at acidic pH, but rice is also grown at calcareous conditions, which especially induce Fe deficiency in the plants. In this study, we assay the effect of Si in rice suffering both Fe deficiency and sufficiency in hydroponics at two pHs (5.
View Article and Find Full Text PDFSilicon has not been cataloged as an essential element for higher plants. However, it has shown beneficial effects on many crops, especially under abiotic and biotic stresses. Silicon fertilization was evaluated for the first time on plants exposed to fluctuations in an Fe regime (Fe sufficiency followed by Fe deficiency and, in turn, by Fe resupply).
View Article and Find Full Text PDFThe silicon application either as foliar or to the radicular system of strawberry plants was investigated. Fortuna strawberry plants were grown in two different substrates (coconut fibre and organic substrate) under optimal (20 μM) or low (5 μM) iron (Fe) conditions. During the study, crop parameters including leaf area, SPAD and fruit yield were measured.
View Article and Find Full Text PDFLignosulfonates (LSs) are by-products from the paper industry used as biodegradable fertilizers. However, metal-LS ability to provide micronutrients to crops is related to the stability of the complex and the amount of metal complexed. This work evaluated these parameters using ultraviolet-visible (UV-Vis), Fourier-transform infrared (FTIR), and C-nuclear magnetic resonance (NMR), along with gel filtration chromatography (GFC) and high-performance size exclusion chromatography (HPSEC), for different spruce, eucalyptus, and pine LSs.
View Article and Find Full Text PDFA protective effect by silicon in the amelioration of iron chlorosis has recently been proved for Strategy 1 species, at acidic pH. However in calcareous conditions, the Si effect on Fe acquisition and distribution is still unknown. In this work, the effect of Si on Fe, Mn, Cu and Zn distribution was studied in rice (Strategy 2 species) under Fe sufficiency and deficiency.
View Article and Find Full Text PDFThe growing concern over the environmental risk of synthetic chelate application promotes the search for alternatives in Fe fertilization, such as biodegradable chelating agents and natural complexing agents. In this work, plant responses to the application of several Fe treatments (chelates and complexes) was analyzed to study their potential use in Fe fertilization under calcareous conditions. Thus, the root ferric chelate reductase (FCR) activity of soybean (Glycine max cv.
View Article and Find Full Text PDFZn-Lignosulfonates (LS) fertilizers are used as an eco-friendly alternative to chelate formulations. The mechanisms of Zn release in the rhizosphere by both types of products are compared. The ability to provide Zn to of non-modified and chemically modified ZnLS and ZnEDTA is compared in a hydroponic assay.
View Article and Find Full Text PDFPlant Physiol Biochem
November 2016
It is well established the beneficial role of silicon (Si) in alleviating abiotic stress. However, it remains poorly understood the mechanisms of the Si-mediated protection against metal deficiency, especially the zinc (Zn) one. Recently, it has been proposed that Si may act by an interaction with this biometal in the root apoplast contributing to its movement through the plant, as in the case of Fe deficiency.
View Article and Find Full Text PDFBackground: Efficient use of Fe chelates is crucial to avoid environmental risks and reduce economic losses. HBED/Fe has been recently approved by the European Union for soil fertilisation, but studies delving into the best timing for its application are necessary. In this work, a batch incubation experiment and two biological experiments were developed to determine the optimal physiological stage for a sustainable application of HBED/Fe in soil fertilisation compared with EDDHA/Fe fertilisers using Fe.
View Article and Find Full Text PDFSilicon protects plants against various biotic and abiotic stresses, including metal toxicity. Under a high metal concentration, Si can externally decrease metal availability to the plant by its precipitation in the growth media, and Si also affects the metal distribution inside the plant, diminishing the damage. Could Si also protect plants against metal deficiency stress? Recently, the physiological role of Si in relation to micronutrients deficiency symptoms has been assessed in several plant species in hydroponics.
View Article and Find Full Text PDFJ Agric Food Chem
December 2013
Water-soluble humic substances (denoted by LN) extracted at alkaline pH from leonardite are proposed to be used as complexing agents to overcome micronutrient deficiencies in plants such as iron chlorosis. LN presents oxidized functional groups that can bind Fe(2+) and Fe(3+). The knowledge of the environment of Fe in the Fe-LN complexes is a key point in the studies on their efficacy as Fe fertilizers.
View Article and Find Full Text PDFSilicon is considered an essential element in several crops enhancing growth and alleviating different biotic and abiotic stresses. In this work, the role of Si in the alleviation of iron deficiency symptoms and in the Fe distribution in iron deficient plants has been studied. Thus, soybean and cucumber plants grown in hydroponic culture under iron limiting conditions were treated with different Si doses (0.
View Article and Find Full Text PDFIron chlorosis is a very common nutritional disorder in plants that can be treated using iron fertilizers. Synthetic chelates have been used to correct this problem, but nowadays environmental concerns have enforced the search for new, more environmentally friendly ligands, such as lignosulfonates. In this paper, Fe coordination environment and speciation in lignosulfonate (LS) complexes prepared under different experimental conditions were studied by (57)Fe Mössbauer spectroscopy in relation to the Fe-complexing capacities, chemical characteristics of the different products, and efficiency to provide iron in agronomic conditions.
View Article and Find Full Text PDFThe improvement of Zn fertilizers requires new techniques to evaluate their efficacy. In this paper, the (67)Zn stable isotope was used as tracer of several Zn-lignosulfonate complexes to study the foliar-applied Zn uptake and distribution behavior in the plant, compared with ZnEDTA. Navy bean plants ( Phaseolus vulgaris L.
View Article and Find Full Text PDFBackground: Ethylenediamine-N, N'-bis(2-hydroxyphenylacetic acid (EDDHA) is one of the most efficient iron-chelating agents employed to relieve iron chlorosis in plants. It has been well known for decades that this compound is photosensitive, but in spite of this fact its degradation pathways are virtually unknown. The aim of this work was to evaluate how the length of sunlight exposure and the concentration of irradiated EDDHA/Fe(3+) solutions influence the photostability of the chelate at constant pH.
View Article and Find Full Text PDFSynthetic Fe chelates are the most efficient agricultural practice to control Fe deficiency in crops, EDTA/Fe3+ and o,o-EDDHA/Fe3+ being the most commonly used. Their efficacy as Fe sources and carriers in soils can be severely limited by their retention on it. The aim of this work is to evaluate the possible bias introduced in the studies of the iron chelate retention by soils.
View Article and Find Full Text PDFBackground: During the last decade, environmental concerns regarding the use of recalcitrant synthetic chelates to overcome iron chlorosis has increased and new ligands such as lignosulfonates (LS) have been evaluated. However, the efficacy of these products is variable. In this work a hardwood (eucalyptus) and softwood (spruce) LS were compared to try to relate their physico-chemical characteristics and their efficacy.
View Article and Find Full Text PDFBackground: Synthetic Fe chelates are commonly used to overcome Fe deficiencies in crops, but most of them are scarcely biodegradable. Iminodisuccinic acid (IDHA) is a biodegradable chelating agent that is currently being evaluated as an alternative to EDTA. In this work, the efficacy of the foliar application of IDHA/Fe(3+) to soybean chlorotic plants under controlled conditions was studied, testing the influence of the adjuvant used and of the plant nutritional status.
View Article and Find Full Text PDFThe efficacy as Zn fertilizers for wheat of zinc lignosulfonate (ZnLS) products adhered to NPK was evaluated by three plant experimental designs. In the first and second assays, wheat plants were grown under controlled conditions with perlite and a calcareous soil as substrate, respectively. Shoot dry matter and Zn concentration showed that NPK + ZnLS was a better Zn source for wheat than NPK + ZnSO(4) under our experimental conditions.
View Article and Find Full Text PDF