A saturated riparian buffer (SRB) is an edge-of-field conservation practice that intercepts tile drainage and reduces nitrate flux to nearby streams by redistributing the flow as shallow groundwater. In this study, a three-dimensional, finite-difference groundwater model representative of SRBs in central Iowa was developed to assess the flow of groundwater and implications for nitrate removal during spring conditions, when flow to the SRB is highest. The model reproduces field observations of water level with Nash-Sutcliffe efficiency of 0.
View Article and Find Full Text PDFSaturated riparian buffers (SRBs) reduce nitrate export from agricultural tile drainage by infusing drainage water into carbon-rich riparian soils where denitrification and plant uptake occur. The water quality benefits from SRBs are well documented, but uncertainties about their effect on streambank stability have led to design standards that limit the maximum bank height and minimum buffer width, thus reducing the number of suitable candidate sites. In this study, the relationship between SRB design and streambank stability was examined through numerical slope stability modeling and validated using field sites.
View Article and Find Full Text PDFA saturated riparian buffer (SRB) is an edge-of-field conservation practice that reduces nitrate export from agricultural lands by redistributing tile drainage as shallow groundwater and allowing for denitrification and plant uptake. We propose an approach to improve the design of SRBs by analyzing a tradeoff in choosing the SRB width, and we apply the approach to six sites with SRBs in central Iowa. A larger width allows for more residence time, which increases the opportunity for removing nitrate that enters the buffer.
View Article and Find Full Text PDF