Publications by authors named "Louise Rollins-Smith"

Most hosts contain few parasites, whereas few hosts contain many. This pattern, known as aggregation, is well-documented in macroparasites where parasite intensity distribution among hosts affects host-parasite dynamics. Infection intensity also drives fungal disease dynamics, but we lack a basic understanding of host-fungal aggregation patterns, how they compare to macroparasites, and if they reflect biological processes.

View Article and Find Full Text PDF

Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the development of the immune system. The South African clawed frog (Xenopus laevis) has been key to many of these findings.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) play a fundamental role in the innate defense against microbial pathogens, as well as other immune and non-immune functions. Their role in amphibian skin defense against the pathogenic fungus Batrachochytrium dendrobatidis (Bd) is exemplified by experiments in which depletion of host's stored AMPs increases mortality from infection. Yet, the question remains whether there are generalizable patterns of negative or positive correlations between stored AMP defenses and the probability of infection or infection intensity across populations and species.

View Article and Find Full Text PDF

Global amphibian declines are compounded by deadly disease outbreaks caused by the chytrid fungus, (). Much has been learned about the roles of amphibian skin-produced antimicrobial components and microbiomes in controlling , yet almost nothing is known about the roles of skin-resident immune cells in anti- defenses. Mammalian mast cells reside within and serve as key immune sentinels in barrier tissues like skin.

View Article and Find Full Text PDF

The collagen IV (Col-IV) scaffold, the major constituent of the glomerular basement membrane (GBM), is a critical component of the kidney glomerular filtration barrier. In Alport syndrome, affecting millions of people worldwide, over two thousand genetic variants occur in the COL4A3, COL4A4, and COL4A5 genes that encode the Col-IV scaffold. Variants cause loss of scaffold, a suprastructure that tethers macromolecules, from the GBM or assembly of a defective scaffold, causing hematuria in nearly all cases, proteinuria, and often progressive kidney failure.

View Article and Find Full Text PDF

As a class of vertebrates, amphibians, are at greater risk for declines or extinctions than any other vertebrate group, including birds and mammals. There are many threats, including habitat destruction, invasive species, overuse by humans, toxic chemicals and emerging diseases. Climate change which brings unpredictable temperature changes and rainfall constitutes an additional threat.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are produced for defense in nearly all taxa from simple bacteria to complex mammalian species. Some amphibian families have developed this defensive strategy to a high level of sophistication by loading the AMPs into specialized granular glands within the dermis. Enervated by the sympathetic nervous system, the granular glands are poised to deliver an array of AMPs to cleanse the wound and facilitate healing.

View Article and Find Full Text PDF

Hellbenders (Cryptobranchus alleganiensis) are large, aquatic salamanders from the eastern United States. Both subspecies, eastern and Ozark hellbenders, have experienced declines resulting in federal listing of Ozark hellbenders. The globally distributed chytrid fungus, Batrachochytrium dendrobatidis (Bd) has been detected in both subspecies, and Batrachochytrium salamandrivorans (Bsal) poses a new threat if introduced into North America.

View Article and Find Full Text PDF

Host species that can independently maintain a pathogen in a host community and contribute to infection in other species are important targets for disease management. However, the potential of host species to maintain a pathogen is not fixed over time, and an important challenge is understanding how within- and across-season variability in host maintenance potential affects pathogen persistence over longer time scales relevant for disease management (e.g.

View Article and Find Full Text PDF

Amphibian populations have been declining around the world for more than five decades, and the losses continue. Although causes are complex, major contributors to these declines are two chytrid fungi, Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, which both cause the disease termed chytridiomycosis. Previously, we showed that B.

View Article and Find Full Text PDF

Amphibian populations around the world have been affected by two pathogenic fungi within the phylum Chytridiomycota. Batrachochytrium dendrobatidis (Bd) has infected hundreds of species and led to widespread declines and some species extinctions. Batrachochytrium salamandrivorans (Bsal) has devastated some native European salamanders, especially the iconic fire salamanders (Salamandra salamandra).

View Article and Find Full Text PDF

Environmental temperature is a key factor driving various biological processes, including immune defenses and host-pathogen interactions. Here, we evaluated the effects of environmental temperature on the pathogenicity of the emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal), using controlled laboratory experiments, and measured components of host immune defense to identify regulating mechanisms. We found that adult and juvenile Notophthalmus viridescens died faster due to Bsal chytridiomycosis at 14°C than at 6 and 22°C.

View Article and Find Full Text PDF

Species of the family Bufonidae, better known as true toads, are widespread and produce bioactive substances in the secretions obtained from specialized skin macroglands. Some true toads have been employed as a folk remedy to treat infectious diseases caused by microbial pathogens. Recent publications based on in silico analysis highlighted the Bufonidae as promising sources of antimicrobial peptides.

View Article and Find Full Text PDF

Accurately predicting the impacts of climate change on wildlife health requires a deeper understanding of seasonal rhythms in host-pathogen interactions. The amphibian pathogen, Batrachochytrium dendrobatidis (Bd), exhibits seasonality in incidence; however, the role that biological rhythms in host defences play in defining this pattern remains largely unknown. The aim of this study was to examine whether host immune and microbiome defences against Bd correspond with infection risk and seasonal fluctuations in temperature and humidity.

View Article and Find Full Text PDF

Although acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is a manageable disease for many, it is still a source of significant morbidity and economic hardship for many others. The predominant mode of transmission of HIV/AIDS is sexual intercourse, and measures to reduce transmission are needed. Previously, we showed that caerin 1 antimicrobial peptides (AMPs) originally derived from Australian amphibians inhibited in vitro transmission of HIV at relatively low concentrations and had low toxicity for T cells and an endocervical cell line.

View Article and Find Full Text PDF

Scheele (Reports, 29 March 2019, p. 1459) bring needed attention to the effects of amphibian infectious disease. However, the data and methods implicating the disease chytridiomycosis in 501 amphibian species declines are deficient.

View Article and Find Full Text PDF

Amphibians worldwide continue to battle an emerging infectious disease, chytridiomycosis, caused by (). Southern leopard frogs, , are known to become infected with this pathogen, yet they are considered 'of least concern' for declines due to chytridiomycosis. Previous studies have shown that secretes four antimicrobial peptides (AMPs) onto their skin which may play an important role in limiting susceptibility to chytridiomycosis.

View Article and Find Full Text PDF

Probiotics can ameliorate diseases of humans and wildlife, but the mechanisms remain unclear. Host responses to interventions that change their microbiota are largely uncharacterized. We applied a consortium of four natural antifungal bacteria to the skin of endangered Sierra Nevada yellow-legged frogs, Rana sierrae, before experimental exposure to the pathogenic fungus Batrachochytrium dendrobatidis (Bd).

View Article and Find Full Text PDF

Drought can heavily impact aquatic ecosystems. For amphibian species that rely on water availability for larval development, drought can have direct and indirect effects on larval survival and postmetamorphic fitness. Some amphibian species can accelerate the timing of metamorphosis to escape drying habitats through developmental plasticity.

View Article and Find Full Text PDF

Amphibians have been declining around the world for more than four decades. One recognized driver of these declines is the chytrid fungus , which causes the disease chytridiomycosis. Amphibians have complex and varied immune defenses against , but the fungus also has a number of counterdefenses.

View Article and Find Full Text PDF

Amphibian populations worldwide have declined and in some cases become extinct due to chytridiomycosis, a pandemic disease caused by the fungus Batrachochytrium dendrobatidis; however, some species have survived these fungal epidemics. Previous studies have suggested that the resistance of these species is due to the presence of cutaneous bacteria producing antifungal metabolites. As our understanding of these metabolites is still limited, we assessed the potential of such compounds against human-relevant fungi such as Aspergillus.

View Article and Find Full Text PDF

Animal-associated microbiomes are integral to host health, yet key biotic and abiotic factors that shape host-associated microbial communities at the global scale remain poorly understood. We investigated global patterns in amphibian skin bacterial communities, incorporating samples from 2,349 individuals representing 205 amphibian species across a broad biogeographic range. We analysed how biotic and abiotic factors correlate with skin microbial communities using multiple statistical approaches.

View Article and Find Full Text PDF

Human activities impose novel pressures on amphibians, which are experiencing unprecedented global declines, yet population-level responses are poorly understood. A growing body of literature has revealed that noise is an anthropogenic stressor that impacts ecological processes spanning subcellular to ecosystem levels. These consequences can impose novel selective pressures on populations, yet whether populations can adapt to noise is unknown.

View Article and Find Full Text PDF

Management of hyper-virulent generalist pathogens is an emergent global challenge, yet for most disease systems we lack a basic understanding as to why some host species suffer mass mortalities, while others resist epizootics. We studied two sympatric species of frogs from the Colombian Andes, which coexist with the amphibian pathogen Batrachochytrium dendrobatidis (Bd), to understand why some species did not succumb to the infection. We found high Bd prevalence in juveniles for both species, yet infection intensities remained low.

View Article and Find Full Text PDF