Alzheimer's disease (AD) is characterized neuropathologically by an abundance of 1) neuritic plaques, which are primarily composed of a fibrillar 42-amino-acid amyloid- peptide (A), as well as 2) neurofibrillary tangles composed of aggregates of hyperphosporylated tau. Elevations in the concentrations of the A42 peptide in the brain, as a result of either increased production or decreased clearance, are postulated to initiate and drive the AD pathologic process. We initially introduced a novel class of bridged aromatics referred t-secretase modulatoro as -secretase modulators that inhibited the production of the A42 peptide and to a lesser degree the A40 peptide while concomitantly increasing the production of the carboxyl-truncated A38 and A37 peptides.
View Article and Find Full Text PDFStress exposure or increased levels of corticotropin-releasing factor (CRF) induce hippocampal tau phosphorylation (tau-P) in rodent models, a process that is dependent on the type-1 CRF receptor (CRFR1). Although these preclinical studies on stress-induced tau-P provide mechanistic insight for epidemiological work that identifies stress as a risk factor for Alzheimer's disease (AD), the actual impact of stress-induced tau-P on neuronal function remains unclear. To determine the functional consequences of stress-induced tau-P, we developed a novel mouse neuronal cell culture system to explore the impact of acute (0.
View Article and Find Full Text PDFIntroduction: Stress and corticotropin-releasing factor (CRF) have been implicated as mechanistically involved in Alzheimer's disease (AD), but agents that impact CRF signaling have not been carefully tested for therapeutic efficacy or long-term safety in animal models.
Methods: To test whether antagonism of the type-1 corticotropin-releasing factor receptor (CRFR1) could be used as a disease-modifying treatment for AD, we used a preclinical prevention paradigm and treated 30-day-old AD transgenic mice with the small-molecule, CRFR1-selective antagonist, R121919, for 5 months, and examined AD pathologic and behavioral end points.
Results: R121919 significantly prevented the onset of cognitive impairment in female mice and reduced cellular and synaptic deficits and beta amyloid and C-terminal fragment-β levels in both genders.
Trophoblast differentiation during early placental development is critical for successful pregnancy and aberrant differentiation causes preeclampsia and early pregnancy loss. During the first trimester, cytotrophoblasts are exposed to low oxygen tension (equivalent to~2%-3% O2) and differentiation proceeds along an extravillous pathway (giving rise to invasive extravillous cytotrophoblasts) and a villous pathway (giving rise to multinucleated syncytiotrophoblast). Interstitial extravillous cytotrophoblasts invade the decidua, while endovascular extravillous cytotrophoblasts are involved in re-modelling uterine spiral arteries.
View Article and Find Full Text PDFStress exposure and the corticotropin-releasing factor (CRF) system have been implicated as mechanistically involved in both Alzheimer's disease (AD) and associated rodent models. In particular, the major stress receptor, CRF receptor type 1 (CRFR1), modulates cellular activity in many AD-relevant brain areas, and has been demonstrated to impact both tau phosphorylation and amyloid-β (Aβ) pathways. The overarching goal of our laboratory is to develop and characterize agents that impact the CRF signaling system as disease-modifying treatments for AD.
View Article and Find Full Text PDFReports from Alzheimer’s disease (AD) biomarker work have shown a strong link between oxidative stress and AD neuropathology. The nonenzymatic antioxidant, glutathione (GSH), plays a crucial role in defense against reactive oxygen species and maintenance of GSH redox homeostasis. In particular, our previous studies on GSH redox imbalance have implicated oxidative stress induced by excessive reactive oxygen species as a major mediator of AD-like events, with the presence of S- glutathionylated proteins (Pr-SSG) appearing prior to overt AD neuropathology.
View Article and Find Full Text PDFClinical and basic science research suggests that stress and/or changes in central stress signaling intermediates may be involved in Alzheimer's disease (AD) pathogenesis. Although the links between stress and AD remain unsettled, data from our group and others have established that stress exposure in rodents may confer susceptibility to AD pathology by inducing hippocampal tau phosphorylation (tau-P). Work in our laboratory has shown that stress-induced tau-P requires activation of the type-1 corticotropin-releasing factor receptor (CRFR1).
View Article and Find Full Text PDF