Most patients with acute myeloid leukemia (AML) have a poor prognosis. Curative therapy of AML requires the complete eradication of the leukemic stem cells (LSCs). One aspect of LSCs that is poorly understood is their low frequency in the total population of leukemic cells in AML patients.
View Article and Find Full Text PDFEpigenetic alterations play an important role in the development of acute myeloid leukemia (AML) by silencing of genes that suppress leukemogenesis and differentiation. One of the key epigenetic changes in AML is gene silencing by DNA methylation. The importance of this alteration is illustrated by the induction of remissions in AML by 5-aza-2'-deoxycytidine (5-AZA-CdR, decitabine), a potent inhibitor of DNA methylation.
View Article and Find Full Text PDFBackground: The silencing of tumor suppressor genes (TSGs) by aberrant DNA methylation occurs frequently in acute myeloid leukemia (AML). This epigenetic alteration can be reversed by 5-aza-2'-deoxcytidine (decitabine, 5-AZA-CdR). Although 5-AZA-CdR can induce complete remissions in patients with AML, most patients relapse.
View Article and Find Full Text PDFTreatment of elderly patients with acute myeloid leukemia (AML) with standard cytarabine (ARA-C) chemotherapy can achieve some complete responses (CR), but the median overall survival is less than one year. New approaches should be investigated. The inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (decitabine, DAC), shows effectiveness in these patients, but was not approved by the US Federal Drug Administration.
View Article and Find Full Text PDFDNA methylation and histone methylation are both involved in epigenetic regulation of gene expression and their dysregulation can play an important role in leukemogenesis. Aberrant DNA methylation has been reported to silence the expression of tumor suppressor genes in leukemia. Overexpression of the histone methyltransferase, EZH2, a subunit of the polycomb group repressive complex 2 (PRC2), was observed to promote oncogenesis.
View Article and Find Full Text PDFNew approaches should be sought to treat high-risk acute lymphoblastic leukemia (ALL). Since aberrant DNA methylation plays an important role in leukemogenesis of ALL, it can be targeted by 5-aza-2'-deoxycytidine (5-AZA-CdR), a potent inhibitor of DNA methylation. 5-AZA-CdR is a prodrug that is activated by deoxycytidine kinase (DCK).
View Article and Find Full Text PDF5-Aza-2'-deoxycytidine (5-AZA-CdR), a potent inhibitor of DNA methylation, is an effective agent for the treatment of leukemia. The aim of this study was to investigate the antileukemic activity of this epigenetic agent in combination with genistein, a nontoxic isoflavone with chemopreventive activity. The combined treatment produced a synergistic loss of clonogenicity in human myeloid (HL-60) and lymphoid (MOLT-3) leukemic cell lines.
View Article and Find Full Text PDFBackground: The inactivation of tumor suppressor genes (TSGs) by aberrant DNA methylation plays an important role in the development of malignancy. Since this epigenetic change is reversible, it is a potential target for chemotherapeutic intervention using an inhibitor of DNA methylation, such as 5-aza-2'-deoxycytidine (DAC). Although clinical studies show that DAC has activity against hematological malignancies, the optimal dose-schedule of this epigenetic agent still needs to be established.
View Article and Find Full Text PDFCytidine (CR) deaminase is a key enzyme in the catabolism of cytosine nucleoside analogues, since their deamination results in a loss of their pharmacological activity. In this report we have investigated the importance of CR deaminase with respect to the antineoplastic action of inhibitors of DNA methylation, 5-aza-2'-deoxycytidine (5-AZA-CdR) and zebularine. Zebularine has a dual mechanism of action, since it can also inhibit CR deaminase.
View Article and Find Full Text PDFSoy has been used in traditional medicine for the treatment of various diseases, including cancer. The isoflavones present in soy have been shown in animal models to have cancer-preventing activity. However, the therapeutic effects of isoflavones against cancer are still unclear.
View Article and Find Full Text PDFTumor suppressor genes that have been silenced by aberrant DNA methylation are potential targets for reactivation by novel chemotherapeutic agents. The potent inhibitor of DNA methylation and antileukemic agent, 5-aza-2'-deoxycytidine (5-AZA-CdR, Decitabine), can reactivate silent tumor suppressor genes. One hindrance to the curative potential of 5-AZA-CdR is its rapid in vivo inactivation by cytidine deaminase (CD).
View Article and Find Full Text PDFEpigenetic changes, such as aberrant DNA methylation that silences tumor suppressor genes (TSGs), can play an important role in the development of leukemia. The DNA methylation inhibitor, 5-aza-2'-deoxycytidine (5-AZA-CdR), can reactivate these silent TSGs and is an interesting agent to investigate for therapy of leukemia. It has been reported that the effectiveness of 5-AZA-CdR to reactivate TSG can be enhanced by inhibitors of histone deacetylase (HDIs).
View Article and Find Full Text PDFBackground: Inactivation of genes that suppress neoplasia by aberrant DNA methylation is a key event that occurs during the development of leukemia. The inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5AZA), which can re-activate these genes, is under clinical investigation for therapy of leukemia. The objective of this study was to determine the concentrations of 5AZA that will re-activate target silent genes in human leukemic cell lines.
View Article and Find Full Text PDFDuring the development of leukemia, genes that suppress growth and induce differentiation can be silenced by aberrant DNA methylation and by changes in chromatin structure that involve histone deacetylation. It has been reported that a positive interaction between DNA methylation and histone deacetylation takes place to inhibit transcription. Based on this observation, our working hypothesis was that a combination of inhibitors of these processes should produce an enhancement of their antineoplastic activity on leukemic cells.
View Article and Find Full Text PDFCurrent chemotherapy of advanced non-small cell lung cancer produces only a modest increase in survival time. New approaches are needed to improve its effectiveness. During tumorigenesis, silencing of tumor suppressor genes can occur by aberrant methylation.
View Article and Find Full Text PDF