Atherosclerosis is a pervasive contributor to ischemic heart disease and stroke. Despite the advance of lipid-lowering therapies and anti-hypertensive agents, the residual risk of an atherosclerotic event remains high, and developing therapeutic strategies has proven challenging. This is due to the complexity of atherosclerosis with a spatial interplay of multiple cell types within the vascular wall.
View Article and Find Full Text PDFBackground And Aims: Randomized clinical studies have shown a reduction in cardiovascular outcomes with glucagon-like peptide 1 receptor agonist (GLP-1RA) treatment with the hypothesized mechanisms being an underlying effect on atherosclerosis. Here, we aimed to assess the pharmacological effects of semaglutide in an atheroprone murine model that recapitulates central mechanisms related to vascular smooth muscle cell (VSMC) phenotypic switching and endothelial dysfunction known to operate within the atherosclerotic plaque.
Methods: In study A, we employed an electrical current to the carotid artery in ApoE-/- mice to induce severe VSMC injury and death, after which the arteries were allowed to heal for 4 weeks.
Aims: To investigate the influence of the dose in the FITC-Dextran 4kDa (FD-4) permeability test in an obese mouse model, we tested the bodyweight dose regimen and a lean body mass-based dose regimen in high fat diet (HFD) mice and low fat diet (LFD) mice. We hypothesized that the FD-4 permeation result would be dose-dependent.
Methods: The two dose regimens were compared in HFD and LFD mice.
Exocrine glands in the submucosa of the proximal duodenum secrete alkaline fluid containing mucus to protect the intestinal mucosa from acidic stomach contents. These glands, known as Brunner's glands, express high glucagon-like peptide 1 receptor (GLP-1R) levels. Previous studies have suggested that activation of the GLP-1R induces expression of barrier protective genes in Brunner's glands.
View Article and Find Full Text PDF