Background: Malaria in pregnancy causes maternal, fetal and neonatal morbidity and mortality, and maternal innate immune responses are implicated in pathogenesis of these complications. The effects of malaria exposure and obstetric and demographic factors on the early maternal immune response are poorly understood.
Methods: Peripheral blood mononuclear cell responses to Plasmodium falciparum-infected erythrocytes and phytohemagglutinin were compared between pregnant women from Papua New Guinea (malaria-exposed) with and without current malaria infection and from Australia (unexposed).
In a randomised trial comparing intermittent screening and treatment (IST) with dihydroartemisinin-piperaquine (DP) and intermittent preventive therapy against malaria in pregnancy (IPT) with sulfadoxine-pyrimethamine (SP) in Malawi, the impacts of IST-DP and IPT-SP on the development and maintenance of malaria antibody immunity were compared. Pregnant Malawian women were randomised to receive IST-DP or IPT-SP. In a nested study, paired enrolment and delivery plasma samples from 681 women were assayed for antibodies against recombinant antigens and for IgG and opsonising antibodies to antigens found on infected erythrocytes (IEs).
View Article and Find Full Text PDFUnlabelled: The local production of gamma interferon (IFN-γ) is important to control Toxoplasma gondii in the brain, but the basis for these protective effects is not fully understood. The studies presented here reveal that the ability of IFN-γ to inhibit parasite replication in astrocytes in vitro is dependent on signal transducer and activator of transcription 1 (STAT1) and that mice that specifically lack STAT1 in astrocytes are unable to limit parasite replication in the central nervous system (CNS). This susceptibility is associated with a loss of antimicrobial pathways and increased cyst formation in astrocytes.
View Article and Find Full Text PDFBackground: Regular anti-malarial therapy in pregnancy, a pillar of malaria control, may affect malaria immunity, with therapeutic implications in regions of reducing transmission.
Methods: Plasma antibodies to leading vaccine candidate merozoite antigens and opsonizing antibodies to endothelial-binding and placental-binding infected erythrocytes were quantified in pregnant Melanesian women receiving sulfadoxine-pyrimethamine (SP) with chloroquine taken once, or three courses of SP with azithromycin.
Results: Malaria prevalence was low.
Background: As malaria control is intensified, pregnant women may be less exposed to malaria, thus affecting the acquisition of protective antibody.
Methods: Plasma samples were collected from Malawian and Papua New Guinean (PNG) pregnant women enrolled over 7-year periods, during which malaria prevalence fell by over two thirds. Immunoglobulin G (IgG) levels to schizont extract, merozoite antigens, and VAR2CSA-DBL5ε were measured by enzyme-linked immunosorbent assay (ELISA).
The cytokine IL-10 has an important role in limiting inflammation in many settings, including toxoplasmosis. In the present studies, an IL-10 reporter mouse was used to identify the sources of this cytokine following challenge with Toxoplasma gondii. During infection, multiple cell types expressed the IL-10 reporter but NK cells were a major early source of this cytokine.
View Article and Find Full Text PDFBackground: Pregnant women living in unstable malaria transmission settings may develop severe malaria (SM). The pathogenesis of SM in pregnancy is poorly understood.
Methods: To determine whether SM in pregnancy is associated with lower malarial antibody responses and higher cytokine responses, plasma samples were collected from 121 Sudanese pregnant women of whom 39 were diagnosed with SM.
Breaking the long-held paradigm that primary B cells are not phagocytic, several studies have demonstrated recently that B cells from fish, amphibians, and reptilians have a significant phagocytic capacity. Whether such capacity has remained conserved in certain mammalian B cell subsets is presently an enigma. Here, we report a previously unrecognized ability of PerC B-1a and B-1b lymphocytes to phagocytose latex beads and bacteria.
View Article and Find Full Text PDFLIGHT (TNFSF14) is a member of the TNF superfamily involved in inflammation and defence against infection. LIGHT signals via two cell-bound receptors; herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTβR). We found that LIGHT is critical for control of hepatic parasite growth in mice with visceral leishmaniasis (VL) caused by infection with the protozoan parasite Leishmania donovani.
View Article and Find Full Text PDFUnder normal conditions the immune system has limited access to the brain; however, during toxoplasmic encephalitis (TE), large numbers of T cells and APCs accumulate within this site. A combination of real time imaging, transgenic reporter mice, and recombinant parasites allowed a comprehensive analysis of CD11c+ cells during TE. These studies reveal that the CNS CD11c+ cells consist of a mixture of microglia and dendritic cells (DCs) with distinct behavior associated with their ability to interact with parasites or effector T cells.
View Article and Find Full Text PDFBackground: Severe malaria (SM) syndromes caused by Plasmodium falciparum infection result in major morbidity and mortality each year. However, only a fraction of P. falciparum infections develop into SM, implicating host genetic factors as important determinants of disease outcome.
View Article and Find Full Text PDFCerebral malaria is a severe complication of malaria. Sequestration of parasitized RBCs in brain microvasculature is associated with disease pathogenesis, but our understanding of this process is incomplete. In this study, we examined parasite tissue sequestration in an experimental model of cerebral malaria (ECM).
View Article and Find Full Text PDFBackground: Age and host genetics are important determinants of malaria severity. Lymphotoxin-alpha (LTalpha) has been associated with the development of cerebral malaria (CM) and other severe malaria (SM) syndromes. Mutations in genes regulating LTalpha production contribute to other acute vascular diseases and may contribute to malaria pathogenesis.
View Article and Find Full Text PDFTumor necrosis factor (TNF) has long been recognized to promote malaria parasite killing, but also to contribute to the development of severe malaria disease. The precise molecular mechanisms that influence these different outcomes in malaria patients are not well understood, but the virulence and drug-resistance phenotype of malaria parasites and the genetic background and age of patients are likely to be important determinants. In the past few years, important roles for other TNF family members in host immune responses to malaria parasites and the induction of disease pathology have been discovered.
View Article and Find Full Text PDFTumor necrosis factor (TNF) is a key cytokine in the effector phase of graft-versus-host disease (GVHD) after bone marrow transplantation, and TNF inhibitors have shown efficacy in clinical and experimental GVHD. TNF signals through the TNF receptors (TNFR), which also bind soluble lymphotoxin (LTalpha3), a TNF family member with a previously unexamined role in GVHD pathogenesis. We have used preclinical models to investigate the role of LT in GVHD.
View Article and Find Full Text PDFStudies in experimental cerebral malaria (ECM) in mice have identified T cells and TNF family members as critical mediators of pathology. In this study we report a role for LIGHT-lymphotoxin beta Receptor (LTbetaR) signaling in the development of ECM and control of parasite growth. Specific blockade of LIGHT-LTbetaR, but not LIGHT-herpesvirus entry mediator interactions, abrogated the accumulation of parasites and the recruitment of pathogenic CD8(+) T cells and monocytes to the brain during infection without affecting early activation of CD4(+) T cells, CD8(+) T cells, or NK cells.
View Article and Find Full Text PDFCerebral malaria (CM) is a severe complication of Plasmodium falciparum infection, predominantly experienced by children and nonimmune adults, which results in significant mortality and long-term sequelae. Previous studies have reported distinct susceptibility gene loci in CBA/CaH (CBA) and C57BL/6 (B6) mice with experimental CM (ECM) caused by infection with Plasmodium berghei ANKA. Here we present an analysis of genome-wide expression profiles in brain tissue taken from B6 and CBA mice with ECM and report significant heterogeneity between the two mouse strains.
View Article and Find Full Text PDFWe report that natural killer T (NKT) cells play only a minor physiological role in protection from Leishmania donovani infection in C57BL/6 mice. Furthermore, attempts at therapeutic activation of invariant NKT (iNKT) cells with alpha-galactosylceramide (alpha-GalCer) during L. donovani infection exacerbated, rather than ameliorated, experimental visceral leishmaniasis.
View Article and Find Full Text PDFCerebral malaria (CM) is a serious complication of Plasmodium falciparum infection that is responsible for a significant number of deaths in children and nonimmune adults. A failure to control blood parasitemia and subsequent sequestration of parasites to brain microvasculature are thought to be key events in many CM cases. Here, we show for the first time, to our knowledge, that CD4(+)CD25(+)Foxp3(+) natural regulatory T (Treg) cells contribute to pathogenesis by modulating immune responses in P.
View Article and Find Full Text PDFCerebral malaria (CM) is a serious complication of Plasmodium falciparum infection, causing significant morbidity and mortality among young children and nonimmune adults in the developing world. Although previous work on experimental CM has identified T cells as key mediators of pathology, the APCs and subsets therein required to initiate immunopathology remain unknown. In this study, we show that conventional dendritic cells but not plasmacytoid dendritic cells are required for the induction of malaria parasite-specific CD4+ T cell responses and subsequent experimental CM.
View Article and Find Full Text PDFThe new methods of laser microdissection microscopy have received wide acceptance in biology and have been applied in a small number of parasitology investigations. Here, the techniques and applications of laser microdissection microscopy are reviewed with suggestions of how the systems might be used to explore applied questions in parasite molecular biology and host-parasite interactions.
View Article and Find Full Text PDF