Primary microcephaly (MCPH) is characterized by reduced brain size and intellectual disability. The exact pathophysiological mechanism underlying MCPH remains to be elucidated, but dysfunction of neuronal progenitors in the developing neocortex plays a major role. We identified a homozygous missense mutation (p.
View Article and Find Full Text PDFIn many vertebrate cell types, the proximal part of the primary cilium is positioned within an invagination of the plasma membrane known as the ciliary pocket. Recent evidence points to the conclusion that the ciliary pocket comprises a unique site for exocytosis and endocytosis of ciliary proteins, which regulates the spatiotemporal trafficking of receptors into and out of the cilium to control its sensory function. In this chapter, we provide methods based on electron microscopy, 3D reconstruction of fluorescence images as well as live cell imaging suitable for investigating processes associated with endocytosis at the ciliary pocket.
View Article and Find Full Text PDFPrimary cilia are sensory organelles that coordinate numerous cellular signalling pathways during development and adulthood. Defects in ciliary assembly or function lead to a series of developmental disorders and diseases commonly referred to as ciliopathies. Still, little is known about the formation and function of primary cilia in the mammalian testis.
View Article and Find Full Text PDFPrimary cilia are unique sensory organelles that coordinate cellular signaling networks in vertebrates. Inevitably, defects in the formation or function of primary cilia lead to imbalanced regulation of cellular processes that causes multisystemic disorders and diseases, commonly known as ciliopathies. Mounting evidence has demonstrated that primary cilia coordinate multiple activities that are required for cell migration, which, when they are aberrantly regulated, lead to defects in organogenesis and tissue repair, as well as metastasis of tumors.
View Article and Find Full Text PDF