Publications by authors named "Louise J Skov"

Article Synopsis
  • Midbrain dopaminergic neurons (DANs) have a variety of G protein-coupled receptors (GPCRs), and this study aims to create a comprehensive GPCR atlas for these neurons.
  • Researchers identified 41 unique receptors in DANs, with many specifically expressed in these neurons compared to others in the midbrain, including FFAR4.
  • The study highlights FFAR4 as a key receptor that affects food and water intake as well as body weight, linking fatty acid sensing to the dopamine-reward pathway.
View Article and Find Full Text PDF

Introduction: Liver-expressed antimicrobial peptide-2 (LEAP2) is an endogenous ghrelin receptor antagonist, which is upregulated in the fed state and downregulated during fasting. We hypothesized that the ketone body beta-hydroxybutyrate (BHB) is involved in the downregulation of LEAP2 during conditions with high circulating levels of BHB.

Methods: Hepatic and intestinal Leap2 expression were determined in 3 groups of mice with increasing circulating levels of BHB: prolonged fasting, prolonged ketogenic diet, and oral BHB treatment.

View Article and Find Full Text PDF

Anorexia Nervosa (AN) is a complex disease that impairs the metabolic, mental and physiological health of affected individuals in a severe and sometimes lethal way. Many of the common symptoms in AN patients, such as reduced food intake, anxiety, impaired gut motility or overexercising are connected to both the orexigenic gut hormone ghrelin and the dopaminergic system. Targeting the ghrelin receptor (GhrR) to treat AN seems a promising possibility in current research.

View Article and Find Full Text PDF

Objectives: Obesity is a complex disease associated with a high risk of comorbidities. Gastric bypass surgery, an invasive procedure with low patient eligibility, is currently the most effective intervention that achieves sustained weight loss. This beneficial effect is attributed to alterations in gut hormone signaling.

View Article and Find Full Text PDF

Objective: The goal of this study was to investigate the importance of central hormone-sensitive lipase (HSL) expression in the regulation of food intake and body weight in mice to clarify whether intracellular lipolysis in the mammalian hypothalamus plays a role in regulating appetite.

Methods: Using pharmacological and genetic approaches, we investigated the role of HSL in the rodent brain in the regulation of feeding and energy homeostasis under basal conditions during acute stress and high-fat diet feeding.

Results: We found that HSL, a key enzyme in the catabolism of cellular lipid stores, is expressed in the appetite-regulating centers in the hypothalamus and is activated by acute stress through a mechanism similar to that observed in adipose tissue and skeletal muscle.

View Article and Find Full Text PDF

Aim: Neurons in the arcuate nucleus of the hypothalamus are involved in regulation of food intake and energy expenditure, and dysregulation of signalling in these neurons promotes development of obesity. The role of the rate-limiting enzyme in the NAD salvage pathway, nicotinamide phosphoribosyltransferase (NAMPT), for regulation energy homeostasis by the hypothalamus has not been extensively studied.

Methods: We determined whether Nampt mRNA or protein levels in the hypothalamus of mice were affected by diet-induced obesity, by fasting and re-feeding, and by leptin and ghrelin treatment.

View Article and Find Full Text PDF

Dopamine-producing tyrosine hydroxylase (TH) neurones in the hypothalamic arcuate nucleus (ARC) have recently been shown to be involved in ghrelin signalling and body weight homeostasis. In the present study, we investigate the role of the intracellular regulator RhoA in hypothalamic TH neurones in response to peripheral hormones. Diet-induced obesity was found to be associated with increased phosphorylation of TH in ARC, indicating obesity-associated increased activity of ARC TH neurones.

View Article and Find Full Text PDF

Neurotensin (NT), a gut hormone and neuropeptide, increases in circulation after bariatric surgery in rodents and humans and inhibits food intake in mice. However, its potential to treat obesity and the subsequent metabolic dysfunctions have been difficult to assess owing to its short half-life in vivo. Here, we demonstrate that a long-acting, pegylated analog of the NT peptide (P-NT) reduces food intake, body weight, and adiposity in diet-induced obese mice when administered once daily for 6 days.

View Article and Find Full Text PDF

Biased signaling has been suggested as a means of selectively modulating a limited fraction of the signaling pathways for G-protein-coupled receptor family members. Hence, biased ligands may allow modulation of only the desired physiological functions and not elicit undesired effects associated with pharmacological treatments. The ghrelin receptor is a highly sought antiobesity target, since the gut hormone ghrelin in humans has been shown to increase both food intake and fat accumulation.

View Article and Find Full Text PDF

Neuromedin U (NMU) is a highly conserved endogenous peptide that is involved in a wide range of physiological processes such as regulation of feeding behavior, the stress response and nociception. The major limitation to use NMU as a therapeutic is its short half-life. Here, we describe the development of a set of novel NMU-analogs based on NMU-8, by introducing unnatural amino acids into the native sequence.

View Article and Find Full Text PDF

Ghrelin receptor (Ghr-R) signaling in neurons of the ventral tegmental area (VTA) can modulate dopaminergic function and the reward-related effects of both palatable foods and drugs of abuse. In this study, we re-introduced the Ghr-R in VTA neurons in Ghr-R knockout mice (Ghr-R mice) to specifically study the importance of the constitutively active Ghr-R for VTA neuronal signaling. Our results showed that re-introduction of the Ghr-R in the VTA had no impact on body weight or food intake under basal conditions.

View Article and Find Full Text PDF

Neurotensin (NT) is a peptide expressed in the brain and in the gastrointestinal tract. Brain NT inhibits food intake, but the effects of peripheral NT are less investigated. In this study, peripheral NT decreased food intake in both mice and rats, which was abolished by a NT antagonist.

View Article and Find Full Text PDF

Background: Besides the well-known effects of ghrelin on adiposity and food intake regulation, the ghrelin system has been shown to regulate aspects of behavior including anxiety and stress. However, the effect of virus-mediated overexpression of the ghrelin receptor in the amygdala has not previously been addressed directly.

Methods: First, we examined the acute effect of peripheral ghrelin administration on anxiety- and depression-like behavior using the open field, elevated plus maze, forced swim, and tail suspension tests.

View Article and Find Full Text PDF

To characterize mechanisms responsible for fat accumulation we used a selectively bred obesity-prone (OP) and obesity-resistant (OR) rat model where the rats were fed a Western diet for 76 days. Body composition was assessed by magnetic resonance imaging scans, and as expected, the OP rats developed a higher degree of fat accumulation compared with OR rats. Indirect calorimetry showed that the OP rats had higher respiratory exchange ratio (RER) compared with OR rats, indicating an impaired ability to oxidize fat.

View Article and Find Full Text PDF