Publications by authors named "Louise J Criscenti"

Hypothesis: Understanding the mechanisms of proton transfer on quartz surfaces in water is critical for a range of processes in geochemical, environmental, and materials sciences. The wide range of surface acidities (>9 pKa units) found on the ubiquitous mineral quartz is caused by the structural variations of surface silanol groups. Molecular scale simulations provide essential tools for elucidating the origin of site-specific surface acidities.

View Article and Find Full Text PDF

Using compressive mechanical forces, such as pressure, to induce crystallographic phase transitions and mesostructural changes while modulating material properties in nanoparticles (NPs) is a unique way to discover new phase behaviors, create novel nanostructures, and study emerging properties that are difficult to achieve under conventional conditions. In recent decades, NPs of a plethora of chemical compositions, sizes, shapes, surface ligands, and self-assembled mesostructures have been studied under pressure by in-situ scattering and/or spectroscopy techniques. As a result, the fundamental knowledge of pressure-structure-property relationships has been significantly improved, leading to a better understanding of the design guidelines for nanomaterial synthesis.

View Article and Find Full Text PDF

Reactions at solid-water interfaces play a foundational role in water treatment systems, catalysis, and chemical separations, and in predicting chemical fate and transport in the environment. Over the last century, experimental measurements and computational models have made tremendous progress in capturing reactions at solid surfaces. The interfacial reactivity of a solid surface, however, can change dramatically and unexpectedly when it is confined to the nanoscale.

View Article and Find Full Text PDF

Oriented attachment is an important crystal growth pathway in nature and has been extensively exploited to develop hierarchically structured crystalline materials. Atomistic mismatch in the crystal structure of two particles in the solvent-separated state creates forces that drive particle motions enabling solvent expulsion and coalescence, but the relative magnitudes of the energy barriers for approach, rotation, and translation are not well-known. Here we use classical molecular simulations to calculate the potential of mean force for these three different motions for basal surface encounters of gibbsite nanoplatelets separated by one water layer.

View Article and Find Full Text PDF

Using molecular dynamics simulations, we investigate the molecular scale origin of crystal face selectivity when one gibbsite particle attaches to another in water. A comparison of the free energy per unit surface area of particle-particle attachment indicates that particle attachment through edge surfaces, where the edge surfaces are either (1 0 0) or (1 1 0) crystal faces, is more energetically favorable compared to attachment between two basal surfaces (i.e.

View Article and Find Full Text PDF

Lanthanide elements have well-documented similarities in their chemical behavior, which make the valuable trivalent lanthanide cations (Ln3+) particularly difficult to separate from each other in water. In this work, we apply ab initio molecular dynamics simulations to compare the free energies (ΔGads) associated with the adsorption of lanthanide cations to silica surfaces at a pH condition where SiO- groups are present. The predicted ΔGads for lutetium (Lu3+) and europium (Eu3+) are similar within statistical uncertainties; this is in qualitative agreement with our batch adsorption measurements on silica.

View Article and Find Full Text PDF

Controlling sub-microsecond desorption of water and other impurities from electrode surfaces at high heating rates is crucial for pulsed power applications. Despite the short time scales involved, quasi-equilibrium ideas based on transition state theory (TST) and Arrhenius temperature dependence have been widely applied to fit desorption activation free energies. In this work, we apply molecular dynamics (MD) simulations in conjunction with equilibrium potential-of-mean-force (PMF) techniques to directly compute the activation free energies (Δ*) associated with desorption of intact water molecules from FeOand CrO(0001) surfaces.

View Article and Find Full Text PDF

A molecular-scale understanding of the transition between hydration states in clay minerals remains a challenging problem because of the very fast stepwise swelling process observed from X-ray diffraction (XRD) experiments. XRD profile modeling assumes the coexistence of multiple hydration states in a clay sample to fit the experimental XRD pattern obtained under humid conditions. While XRD profile modeling provides a macroscopic understanding of the heterogeneous hydration structure of clay minerals, a microscopic model of the transition between hydration states is still missing.

View Article and Find Full Text PDF

Observation of vibrational properties of phyllosilicate edges via a combined molecular modeling and experimental approach was performed. Deuterium exchange was utilized to isolate edge vibrational modes from their internal counterparts. The appearance of a specific peak within the broader D2O band indicates the presence of deuteration on the edge surface, and this peak is confirmed with the simulated spectra.

View Article and Find Full Text PDF

Trace metal concentrations in soils and sediments are often controlled by adsorption to iron oxides such as goethite in both natural and contaminated systems. Because of goethite's importance as an adsorbent, its interaction with aqueous solutions has been studied extensively. Nonetheless, despite the use of numerous analytical and computational tools, the properties of goethite-aqueous solution interfaces are not fully understood.

View Article and Find Full Text PDF

A fluid flow in a nanochannel highly depends on the wettability of the channel surface to the fluid. The permeability of the nanochannel is usually very low, largely due to the adhesion of fluid at the solid interfaces. Using molecular dynamics (MD) simulations, we demonstrate that the flow of water in a nanochannel with rough hydrophilic surfaces can be significantly enhanced by the presence of a thin layer of supercritical carbon dioxide (scCO2) at the water-solid interfaces.

View Article and Find Full Text PDF

The adsorption equilibrium constants of monovalent and divalent cations to material surfaces in aqueous media are central to many technological, natural, and geochemical processes. Cation adsorption-desorption is often proposed to occur in concert with proton transfer on hydroxyl-covered mineral surfaces, but to date this cooperative effect has been inferred indirectly. This work applies density functional theory-based molecular dynamics simulations of explicit liquid water/mineral interfaces to calculate metal ion desorption free energies.

View Article and Find Full Text PDF

Classical molecular dynamics simulation was used to study the adsorption of Na, Ca, Ba, and Cl ions on gibbsite edge (1 0 0), basal (0 0 1), and nanoparticle (NP) surfaces. The gibbsite NP consists of both basal and edge surfaces. Simulation results indicate that Na and Cl ions adsorb on both (1 0 0) and (0 0 1) surfaces as inner-sphere species (i.

View Article and Find Full Text PDF

Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale gas production but unfortunately is poorly understood.

View Article and Find Full Text PDF

The porosity of clay aggregates is an important property governing chemical reactions and fluid flow in low-permeability geologic formations and clay-based engineered barrier systems. Pore spaces in clays include interlayer and interparticle pores. Under compaction and dewatering, the size and geometry of such pore spaces may vary significantly (sub-nanometer to microns) depending on ambient physical and chemical conditions.

View Article and Find Full Text PDF

The complexation of toxic and/or radioactive ions on to mineral surfaces is an important topic in geochemistry. We apply periodic-boundary-conditions density functional theory (DFT) molecular dynamics simulations to examine the coordination of Pb(II), [Formula: see text], and their contact ion pairs to goethite (1 0 1) and (2 1 0) surfaces. The multitude of Pb(II) adsorption sites and possibility of Pb(II)-induced FeOH deprotonation make this a complex problem.

View Article and Find Full Text PDF

Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix-a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30-47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases.

View Article and Find Full Text PDF

Sulfate adsorption at buried mineral/solution interfaces is of great interest in geochemistry and atmospheric aerosol chemistry due to the sulfate anion's environmental ubiquity and the wide role of physical and chemical phenomena that it impacts. Here we present the first application of total internal reflection-Raman (TIR-Raman) spectroscopy, a surface sensitive spectroscopy, to probe sulfate ion behavior at the buried hematite/solution interface. Hematite is the most thermodynamically stable iron oxide polymorph and as such is widely found in nature.

View Article and Find Full Text PDF

Two approaches, macroscopic adsorption experiments and molecular dynamics simulations, were employed to study the effect of temperature on alkaline earth metals adsorption on gibbsite surfaces. Increased reaction temperature enhanced the extent of metal ion adsorption for all of the alkaline earth metals studied. Whereas Mg(2+) and Sr(2+) adsorption displayed dependence on ionic strength, Sr(2+) adsorption exhibited less dependence on background ionic strength regardless of temperature.

View Article and Find Full Text PDF

Proposed carbon dioxide sequestration scenarios in sedimentary reservoirs require investigation into the interactions between supercritical carbon dioxide, brines, and the mineral phases found in the basin and overlying caprock. Molecular simulations can help to understand the partitioning of metal cations between aqueous solutions and supercritical carbon dioxide where limited experimental data exist. In this effort, we used classical molecular dynamics simulations to compare the solvation of alkali and alkaline-earth metal cations in water and liquid CO(2) at 300 K by combining a flexible simple point charge model for water and an accurate flexible force field for CO(2).

View Article and Find Full Text PDF

Accurate predictions of the acid-base behavior of hydroxyl groups at mineral surfaces are critical for understanding the trapping of toxic and radioactive ions in soil samples. In this work, we apply ab initio molecular dynamics (AIMD) simulations and potential-of-mean-force techniques to calculate the pK(a) of a doubly protonated oxygen atom bonded to a single Fe atom (Fe(I)OH(2)) on the goethite (101) surface. Using formic acid as a reference system, pK(a) = 7.

View Article and Find Full Text PDF

Grand canonical Monte Carlo simulations were performed to identify trends in low-pressure adsorption of a broad range of organic molecules by a set of metal-organic frameworks (MOFs). While previous simulation studies focused on the adsorption of small molecules such as carbon dioxide and methane, we consider more complicated organic molecules relevant to chemical sensing and detection: small aromatics (o-, m-, and p-xylene), polycyclic aromatic hydrocarbons (naphthalene, anthracene, phenanthrene), explosives (TNT and RDX), and chemical warfare agents (GA and VM). The framework materials include several Zn-IRMOFs (IRMOFs 1-3, 7, 8), a Cr-MOF (CrMIL-53lp), and a Cu-MOF (HKUST-1).

View Article and Find Full Text PDF

Understanding the acid-base behavior of silica surfaces is critical for many nanoscience and bionano interface applications. Silanol groups (SiOH) on silica surfaces exhibit two acidity constants-one as acidic as vinegar-but their structural basis remains controversial. The atomic details of the more acidic silanol site govern not just the overall surface charge density at near neutral solution pH but also how ions and biomolecules interact with and bind to silica immersed in water.

View Article and Find Full Text PDF

The relative stability of alkaline earth metals (M2+ = Mg2+, Ca2+, Sr2+, and Ba2+) and their chloride complexes in aqueous solution is examined through molecular dynamics simulations using a flexible SPC water model with an internally consistent set of metal ion force field parameters. For each metal-chloride ion pair in aqueous solution, the free energy profile was calculated via potential of mean force simulations. The simulations provide detailed thermodynamic information regarding the relative stability of the different types of metal-chloride pairs.

View Article and Find Full Text PDF