Background: Hydrocephalus is a pathological accumulation of cerebrospinal fluid (CSF), leading to ventriculomegaly. Hydrocephalus may be primary or secondary to traumatic brain injury, infection, or intracranial hemorrhage. Regardless of cause, current treatment involves surgery to drain the excess CSF.
View Article and Find Full Text PDFThe objectives of these studies were twofold: ) to characterize the human choroid plexus papilloma (HIBCPP) cell line as a model of the blood-cerebrospinal fluid barrier (BCSFB) via morphology, tightness, and polarization of transporters in choroid plexus epithelia (CPe), and ) to utilize Ussing-style electrophysiology to elucidate signaling pathways associated with the activation of the transient receptor potential vanilloid 4 (TRPV4) channel involved in cerebrospinal fluid (CSF) secretion. RT-PCR was implemented to determine gene expression of cell fate markers, junctional complex proteins, and transporters of interest. Scanning electron microscopy and confocal three-dimensional renderings of cultures grown on permeable supports were utilized to delineate the morphology of the brush border, junctional complexes, and polarization of key transporters.
View Article and Find Full Text PDFThe choroid plexus epithelium (CPe) forms a barrier between the cerebral blood supply and the cerebrospinal fluid (CSF), establishing the blood-CSF barrier (BCSFB). CSF is actively secreted by the CPe via tightly controlled processes involving multiple channels, transporters, and pumps. The importance of controlling CSF production and composition has been accentuated recently with an appreciation of CSF dysfunction in many pathologies.
View Article and Find Full Text PDF