Climate change can have positive and negative effects on the carbon pools and budgets in soil and plant fractions, but net effects are unclear and expected to vary widely within the arctic. We report responses after nine years (2012-2021) of increased snow depth (snow fences) and summer warming (open top chambers) and the combination on soil and plant carbon pools within a tundra ecosystem in West Greenland. Data included characteristics of depth-specific soil samples, including the rhizosphere soil, as well as vegetation responses of NDVI-derived traits, plant species cover and aboveground biomass, litter and roots.
View Article and Find Full Text PDFIncreasing temperatures and winter precipitation can influence the carbon (C) exchange rates in arctic ecosystems. Feedbacks can be both positive and negative, but the net effects are unclear and expected to vary strongly across the Arctic. There is a lack of understanding of the combined effects of increased summer warming and winter precipitation on the C balance in these ecosystems.
View Article and Find Full Text PDFIn the face of global climate change there is an increasing demand for biofuel, which exerts pressure on production and thus management of biofuel plantations. The intensification of whole-tree harvest from biofuel plantations increases export of nutrients. Returning ash from biofuel combustion to the forest plantations can amend the soil nutrient status and thus facilitate sustainable forest management.
View Article and Find Full Text PDFEcotoxicol Environ Saf
July 2018
Harvesting whole-tree biomass for biofuel combustion intensifies removal of nutrients from the ecosystem. This can be partly amended by applying ash from the combustion back to the system and thus recycle the nutrients. However, besides being rich in inorganic nutrients, ash also contains trace amounts of heavy metals.
View Article and Find Full Text PDFApplication of bioash from biofuel combustion to soil supports nutrient recycling, but may have unwanted and detrimental ecotoxicological side-effects, as the ash is a complex mixture of compounds that could affect soil invertebrates directly or through changes in their food or habitat conditions. To examine this, we performed laboratory toxicity studies of the effects of wood-ash added to an agricultural soil and the organic horizon of a coniferous plantation soil with the detrivore soil collembolans Folsomia candida and Onychiurus yodai, the gamasid predaceous mite Hypoaspis aculeifer, and the enchytraeid worm Enchytraeus crypticus. We used ash concentrations spanning 0-75 g kg soil.
View Article and Find Full Text PDF