Publications by authors named "Louise Cornmark"

TP53 is the most frequently mutated gene in human cancer. This gene shows not only loss-of-function mutations but also recurrent missense mutations with gain-of-function activity. We have studied the primary bone malignancy osteosarcoma, which harbours one of the most rearranged genomes of all cancers.

View Article and Find Full Text PDF

Osteoblastoma is a locally aggressive tumour of bone. Until recently, its underlying genetic features were largely unknown. During the past two years, reports have demonstrated that acquired structural variations affect the transcription factor FOS in a high proportion of cases.

View Article and Find Full Text PDF

Conventional osteosarcoma is the most common primary malignancy of bone. This group of neoplasms is subclassified according to specific histological features, but hitherto there has been no correlation between subtype, treatment, and prognosis. By in-depth genetic analyses of a chondroblastoma-like osteosarcoma, we detect a genetic profile that is distinct from those previously reported in benign and malignant bone tumors.

View Article and Find Full Text PDF

A major challenge to personalized oncology is that driver mutations vary among cancer cells inhabiting the same tumor. Whether this reflects principally disparate patterns of Darwinian evolution in different tumor regions has remained unexplored. We mapped the prevalence of genetically distinct clones over 250 regions in 54 childhood cancers.

View Article and Find Full Text PDF

Background: Protein kinase C δ (PKCδ) is known to be an important regulator of apoptosis, having mainly pro- but also anti-apoptotic effects depending on context. In a previous study, we found that PKCδ interacts with the pro-apoptotic protein Smac. Smac facilitates apoptosis by suppressing inhibitor of apoptosis proteins (IAPs).

View Article and Find Full Text PDF

Protein kinase C (PKC) δ is a regulator of apoptosis with both pro- and anti-apoptotic effects. The mechanistic basis for the discrepant effects is not completely understood. Here we show that Smac interacts with PKCδ.

View Article and Find Full Text PDF

Several protein kinase C (PKC) isoforms have been shown to influence different cellular processes that may contribute to the malignancy of breast cancer cells. To obtain insight into mechanisms mediating the PKC effects, global gene expression was analyzed in MDA-MB-231 breast cancer cells in which PKCα, PKCδ or PKCε had been down-regulated with siRNA. Gene set enrichment analyses revealed that hypoxia-induced genes were enriched among genes that increased in PKCα-down-regulated cells.

View Article and Find Full Text PDF

G protein-coupled receptor 30 [G protein-coupled estrogen receptor 1 (GPER1)], has been introduced as a membrane estrogen receptor and a candidate cancer biomarker and therapeutic target. However, several questions surround the subcellular localization and signaling of this receptor. In native cells, including mouse myoblast C(2)C(12) cells, Madin-Darby canine kidney epithelial cells, and human ductal breast epithelial tumor T47-D cells, G-1, a GPER1 agonist, and 17β-estradiol stimulated GPER1-dependent cAMP production, a defined plasma membrane (PM) event, and recruitment of β-arrestin2 to the PM.

View Article and Find Full Text PDF

Background: Protein kinase C (PKC) isoforms are potential targets for breast cancer therapy. This study was designed to evaluate which PKC isoforms might be optimal targets for different breast cancer subtypes.

Results: In two cohorts of primary breast cancers, PKCalpha levels correlated to estrogen and progesterone receptor negativity, tumor grade, and proliferative activity, whereas PKCdelta and PKCepsilon did not correlate to clinicopathological parameters.

View Article and Find Full Text PDF