Publications by authors named "Louise C Wilson"

Purpose: The etiopathogenesis of coronal nonsyndromic craniosynostosis (cNCS), a congenital condition defined by premature fusion of 1 or both coronal sutures, remains largely unknown.

Methods: We conducted the largest genome-wide association study of cNCS followed by replication, fine mapping, and functional validation of the most significant region using zebrafish animal model.

Results: Genome-wide association study identified 6 independent genome-wide-significant risk alleles, 4 on chromosome 7q21.

View Article and Find Full Text PDF

The identification of structural variants (SVs) in genomic data represents an ongoing challenge because of difficulties in reliable SV calling leading to reduced sensitivity and specificity. We prepared high-quality DNA from 9 parent-child trios, who had previously undergone short-read whole-genome sequencing (Illumina platform) as part of the Genomics England 100,000 Genomes Project. We reanalysed the genomes using both Bionano optical genome mapping (OGM; 8 probands and one trio) and Nanopore long-read sequencing (Oxford Nanopore Technologies [ONT] platform; all samples).

View Article and Find Full Text PDF

The RUNT-related transcription factor RUNX2 plays a critical role in osteoblast differentiation, and alterations to gene dosage cause distinct craniofacial anomalies. Uniquely amongst the RUNT-related family, vertebrate RUNX2 encodes a polyglutamine/polyalanine repeat (Gln-Glu-Ala in humans), with the length of the polyalanine component completely conserved in great apes. Surprisingly, a frequent 6-amino acid deletion polymorphism, p.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the PRRX1 gene in craniosynostosis, focusing on how certain variants (missense and loss-of-function) affect craniofacial development, with previous research linking PRRX1 to preosteogenic cells in cranial sutures.
  • Researchers used sequencing methods to identify rare variants in PRRX1 among patients suffering from craniosynostosis, discovering a total of 18 individuals with potential pathogenic variants and noting abnormal behavior of mutant proteins through immunofluorescence analyses.
  • The findings highlight that PRRX1 plays a significant role in cranial suture development, and the presence of pathogenic variants is frequently inherited from non-affected relatives,
View Article and Find Full Text PDF

Craniosynostosis, the premature fusion of the cranial sutures, affects ~1 in 2000 children. Although many patients with a genetically determined cause harbor a variant in one of just seven genes or have a chromosomal abnormality, over 60 genes are known to be recurrently mutated, thus comprising a long tail of rarer diagnoses. Genome sequencing for the diagnosis of rare diseases is increasingly used in clinical settings, but analysis of the data is labor intensive and involves a trade-off between achieving high sensitivity or high precision.

View Article and Find Full Text PDF

Background: encodes the Gα (stimulatory G-protein alpha subunit) protein, which mediates G protein-coupled receptor (GPCR) signaling. mutations cause developmental delay, short stature, and skeletal abnormalities in a syndrome called Albright's hereditary osteodystrophy. Because of imprinting, mutations on the maternal allele also cause obesity and hormone resistance (pseudohypoparathyroidism).

View Article and Find Full Text PDF

Purpose: Genome sequencing (GS) for diagnosis of rare genetic disease is being introduced into the clinic, but the complexity of the data poses challenges for developing pipelines with high diagnostic sensitivity. We evaluated the performance of the Genomics England 100,000 Genomes Project (100kGP) panel-based pipelines, using craniosynostosis as a test disease.

Methods: GS data from 114 probands with craniosynostosis and their relatives (314 samples), negative on routine genetic testing, were scrutinized by a specialized research team, and diagnoses compared with those made by 100kGP.

View Article and Find Full Text PDF

We report a patient with profound congenital hypotonia, central hypoventilation, poor visual behaviour with retinal hypopigmentation, and significantly decreased mitochondrial respiratory chain complex I activity in muscle, who died at 7 months of age having made minimal developmental progress. Biallelic predicted truncating P4HTM variants were identified following trio whole-genome sequencing, consistent with a diagnosis of hypotonia, hypoventilation, intellectual disability, dysautonomia, epilepsy and eye abnormalities (HIDEA) syndrome. Very few patients with HIDEA syndrome have been reported previously and mitochondrial abnormalities were observed in three of four previous cases who had a muscle biopsy, suggesting the possibility that HIDEA syndrome represents a primary mitochondrial disorder.

View Article and Find Full Text PDF

Skeletal dysplasias are a large group of rare conditions with widely heterogeneous manifestations and a reputation for being diagnostically difficult. Involvement of the brain and craniovertebral junction are features familiar to the paediatric neuroradiologist. Involvement of the skull itself represents an area of overlap between the domains of the neuroradiologist and the skeletal dysplasia radiologist.

View Article and Find Full Text PDF

Purpose: Enrichment of heterozygous missense and truncating SMAD6 variants was previously reported in nonsyndromic sagittal and metopic synostosis, and interaction of SMAD6 variants with a common polymorphism nearBMP2 (rs1884302) was proposed to contribute to inconsistent penetrance. We determined the occurrence of SMAD6 variants in all types of craniosynostosis, evaluated the impact of different missense variants on SMAD6 function, and tested independently whether rs1884302 genotype significantly modifies the phenotype.

Methods: We performed resequencing of SMAD6 in 795 unsolved patients with any type of craniosynostosis and genotyped rs1884302 in SMAD6-positive individuals and relatives.

View Article and Find Full Text PDF

Our previous genome-wide association study (GWAS) for sagittal nonsyndromic craniosynostosis (sNCS) provided important insights into the genetics of midline CS. In this study, we performed a GWAS for a second midline NCS, metopic NCS (mNCS), using 215 non-Hispanic white case-parent triads. We identified six variants with genome-wide significance (P ≤ 5 × 10): rs781716 (P = 4.

View Article and Find Full Text PDF

Cenani-Lenz syndactyly (CLS) is a rare autosomal recessive syndrome characterized by disorganized oligosyndactyly of upper and lower limbs as well as radioulnar synostosis. Structural renal abnormalities are also common. We report two affected brothers, born to orthodox Jewish parents, in whom we found a novel homozygous missense variant c.

View Article and Find Full Text PDF

Juvenile Paget's disease (JPD) is a rare recessively-inherited bone dysplasia. The great majority of cases described to date have had homozygous mutations in TNFRSF11B, the gene encoding osteoprotegerin. We describe a boy who presented with recurrent clavicular fractures following minor trauma (8 fractures from age 2 to 11).

View Article and Find Full Text PDF

We report a 23 year old female with biallelic truncating variants in the ITCH (Itchy E3 Ubiquitin protein ligase, mouse homolog of; OMIM60649) gene associated with marked short stature, severe early onset chronic lung disease resembling asthma, dysmorphic facial features, and symmetrical camptodactyly of the fingers but normal intellect. The condition has only been reported once previously (Lohr et al., American Journal of Human Genetics, 2010, 86, 447-453) in 10 children from an Old Order Amish family found to have a homozygous frameshift truncating variant in association with failure to thrive, chronic lung disease, motor and cognitive delay, and variable autoimmune diseases including autoimmune hepatitis, enteropathy, hypothyroidism, and diabetes.

View Article and Find Full Text PDF

Mutations in the ERF gene, coding for ETS2 repressor factor, a member of the ETS family of transcription factors cause a recently recognized syndromic form of craniosynostosis (CRS4) with facial dysmorphism, Chiari-1 malformation, speech and language delay, and learning difficulties and/or behavioral problems. The overall prevalence of ERF mutations in patients with syndromic craniosynostosis is around 2%, and 0.7% in clinically nonsyndromic craniosynostosis.

View Article and Find Full Text PDF
Article Synopsis
  • The article had a spelling error in the author's name, Pleuntje J. van der Sluijs.
  • It was incorrectly listed as Eline (P. J.) van der Sluijs.
  • The error has been fixed in both the PDF and HTML formats of the article.
View Article and Find Full Text PDF

Purpose: Pathogenic variants in ARID1B are one of the most frequent causes of intellectual disability (ID) as determined by large-scale exome sequencing studies. Most studies published thus far describe clinically diagnosed Coffin-Siris patients (ARID1B-CSS) and it is unclear whether these data are representative for patients identified through sequencing of unbiased ID cohorts (ARID1B-ID). We therefore sought to determine genotypic and phenotypic differences between ARID1B-ID and ARID1B-CSS.

View Article and Find Full Text PDF

Context: The α subunit of the stimulatory G protein (Gαs) links numerous receptors to adenylyl cyclase. Gαs, encoded by GNAS, is expressed predominantly from the maternal allele in certain tissues. Thus, maternal heterozygous loss-of-function mutations cause hormonal resistance, as in pseudohypoparathyroidism type Ia, whereas somatic gain-of-function mutations cause hormone-independent endocrine stimulation, as in McCune-Albright syndrome.

View Article and Find Full Text PDF
Article Synopsis
  • * A study of 72 participants provided detailed analysis of SAS, going beyond previous limited reports to identify key clinical and genetic characteristics.
  • * Major findings highlight severe speech delays, palate and dental abnormalities, and behavioral issues, which can aid healthcare providers in diagnosis and management, offering better support for affected families.
View Article and Find Full Text PDF

Frontometaphyseal dysplasia (FMD) is caused by gain-of-function mutations in the X-linked gene FLNA in approximately 50% of patients. Recently we characterized an autosomal dominant form of FMD (AD-FMD) caused by mutations in MAP3K7, which accounts for the condition in the majority of patients who lack a FLNA mutation. We previously also described a patient with a de novo variant in TAB2, which we hypothesized was causative of another form of AD-FMD.

View Article and Find Full Text PDF

Pyridoxal 5'-phosphate (PLP), the active form of vitamin B, functions as a cofactor in humans for more than 140 enzymes, many of which are involved in neurotransmitter synthesis and degradation. A deficiency of PLP can present, therefore, as seizures and other symptoms that are treatable with PLP and/or pyridoxine. Deficiency of PLP in the brain can be caused by inborn errors affecting B vitamer metabolism or by inactivation of PLP, which can occur when compounds accumulate as a result of inborn errors of other pathways or when small molecules are ingested.

View Article and Find Full Text PDF

Background: Craniosynostosis, the premature fusion of one or more cranial sutures, occurs in ∼1 in 2250 births, either in isolation or as part of a syndrome. Mutations in at least 57 genes have been associated with craniosynostosis, but only a minority of these are included in routine laboratory genetic testing.

Methods: We used exome or whole genome sequencing to seek a genetic cause in a cohort of 40 subjects with craniosynostosis, selected by clinical or molecular geneticists as being high-priority cases, and in whom prior clinically driven genetic testing had been negative.

View Article and Find Full Text PDF

Frontometaphyseal dysplasia (FMD) is a progressive sclerosing skeletal dysplasia affecting the long bones and skull. The cause of FMD in some individuals is gain-of-function mutations in FLNA, although how these mutations result in a hyperostotic phenotype remains unknown. Approximately one half of individuals with FMD have no identified mutation in FLNA and are phenotypically very similar to individuals with FLNA mutations, except for an increased tendency to form keloid scars.

View Article and Find Full Text PDF

DNA replication precisely duplicates the genome to ensure stable inheritance of genetic information. Impaired licensing of origins of replication during the G1 phase of the cell cycle has been implicated in Meier-Gorlin syndrome (MGS), a disorder defined by the triad of short stature, microtia, and a/hypoplastic patellae. Biallelic partial loss-of-function mutations in multiple components of the pre-replication complex (preRC; ORC1, ORC4, ORC6, CDT1, or CDC6) as well as de novo stabilizing mutations in the licensing inhibitor, GMNN, cause MGS.

View Article and Find Full Text PDF