Publications by authors named "Louise C V Rasmussen"

Translation initiation factor 5B (IF5B) is required for initiation of protein synthesis. The solution structure of archaeal IF5B (aIF5B) was analysed by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) and was indicated to be in both monomeric and dimeric form. Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) of aIF5B indicated that aIF5B forms irreversible dimers in solution but only to a maximum of 5.

View Article and Find Full Text PDF

Translation initiation factor 1 (IF1) is an essential protein in prokaryotes. The nature of IF1 interactions with the mRNA during translation initiation on the ribosome remains unclear, even though the factor has several known functions, one of them being RNA chaperone activity. In this study, we analyzed translational gene expression in vivo in two cold-sensitive chromosomal mutant variants of IF1 with amino acid substitutions, R40D and R69L, using two different reporter gene systems.

View Article and Find Full Text PDF

Initiation of protein synthesis in bacteria involves the combined action of three translation initiation factors, including translation initiation factor IF2. Structural knowledge of this bacterial protein is scarce. A fragment consisting of the four C-terminal domains of IF2 from Escherichia coli was expressed, purified, and characterized by small-angle X-ray scattering (SAXS), and from the SAXS data, a radius of gyration of 43 +/- 1 A and a maximum dimension of approximately 145 A were obtained for the molecule.

View Article and Find Full Text PDF

Initiation of protein synthesis in bacteria relies on the presence of three translation initiation factors, of which translation initiation factor IF1 is the smallest having a molecular weight of only 8.2kDa. In addition to its function in this highly dynamic process, the essential IF1 protein also functions as an RNA chaperone.

View Article and Find Full Text PDF

An important objective in developing new drugs is the achievement of high specificity to maximize curing effect and minimize side-effects, and high specificity is an integral part of the antisense approach. The antisense techniques have been extensively developed from the application of simple long, regular antisense RNA (asRNA) molecules to highly modified versions conferring resistance to nucleases, stability of hybrid formation and other beneficial characteristics, though still preserving the specificity of the original nucleic acids. These new and improved second- and third-generation antisense molecules have shown promising results.

View Article and Find Full Text PDF