Objective: This study aims to analyse lung tumour motion and to investigate the correlation between the internal tumour motion acquired from four-dimensional computed tomography (4DCT) and the motion of an external surrogate.
Methods: A data set of 363 4DCT images was analysed. Tumours were classified based on their anatomical lobes.
J Appl Clin Med Phys
December 2022
Purpose: The shallow depth of maximum dose and higher dose fall-off gradient of a 2.5 MV beam along the central axis that is available for imaging on linear accelerators is investigated for treatment of shallow tumors and sparing the organs at risk (OARs) beyond it. In addition, the 2.
View Article and Find Full Text PDFBackground: Patients treated with radiotherapy for head and neck (H&N) cancer often experience anatomical changes. The potential compromises to Planning Target Volume (PTV) coverage or Organ at Risk (OAR) sparing has prompted the use of adaptive radiotherapy (ART) for these patients. However, implementation of ART is time and resource intensive.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2013
High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood.
View Article and Find Full Text PDFWe present the first direct measurement of ultrafast charge migration in a biomolecular building block - the amino acid phenylalanine. Using an extreme ultraviolet pulse of 1.5 fs duration to ionize molecules isolated in the gas phase, the location of the resulting hole was probed by a 6 fs visible/near-infrared pulse.
View Article and Find Full Text PDFMass spectra from the interaction of intense, femtosecond laser pulses with 1,3-butadiene, 1-butene, and n-butane have been obtained. The proportion of the fragment ions produced as a function of intensity, pulse length, and wavelength was investigated. Potential mass spectrometry applications, for example in the analysis of catalytic reaction products, are discussed.
View Article and Find Full Text PDF