Publications by authors named "Louise Barlind"

Recent clinical reports have highlighted the need for wild-type (WT) and mutant dual inhibitors of c-MET kinase for the treatment of cancer. We report herein a novel chemical series of ATP competitive type-III inhibitors of WT and D1228V mutant c-MET. Using a combination of structure-based drug design and computational analyses, ligand was optimized to a highly selective chemical series with nanomolar activities in biochemical and cellular settings.

View Article and Find Full Text PDF

The c-MET receptor tyrosine kinase has received considerable attention as a cancer drug target yet there remains a need for inhibitors which are selective for c-MET and able to target emerging drug-resistant mutants. We report here the discovery, by screening a DNA-encoded chemical library, of a highly selective c-MET inhibitor which was shown by X-ray crystallography to bind to the kinase in an unprecedented manner. These results represent a novel mode of inhibiting c-MET with a small molecule and may provide a route to targeting drug-resistant forms of the kinase whilst avoiding potential toxicity issues associated with broad kinome inhibition.

View Article and Find Full Text PDF

Fibroblast growth factor 21 (FGF21) is a promising therapeutic agent for treatment of type 2 diabetes (T2D) and non-alcoholic steatohepatitis (NASH). We show that therapeutic levels of FGF21 were achieved following subcutaneous (s.c.

View Article and Find Full Text PDF

Aims: Fibroblast growth factor (FGF) 21, a key regulator of energy metabolism, is currently evaluated in humans for treatment of type 2 diabetes and non-alcoholic steatohepatitis. However, the effects of FGF21 on cardiovascular benefit, particularly on lipoprotein metabolism in relation to atherogenesis, remain elusive.

Methods And Results: Here, the role of FGF21 in lipoprotein metabolism in relation to atherosclerosis development was investigated by pharmacological administration of a half-life extended recombinant FGF21 protein to hypercholesterolaemic APOE*3-Leiden.

View Article and Find Full Text PDF

The MEK1 kinase plays a critical role in key cellular processes, and as such, its dysfunction is strongly linked to several human diseases, particularly cancer. MEK1 has consequently received considerable attention as a drug target, and a significant number of small-molecule inhibitors of this kinase have been reported. The majority of these inhibitors target an allosteric pocket proximal to the ATP binding site which has proven to be highly druggable, with four allosteric MEK1 inhibitors approved to date.

View Article and Find Full Text PDF

We report here a fragment screen directed toward the c-MET kinase from which we discovered a series of inhibitors able to bind to a rare conformation of the protein in which the P-loop adopts a collapsed, or folded, arrangement. Preliminary SAR exploration led to an inhibitor () with nanomolar biochemical activity against c-MET and promising cell activity and kinase selectivity. These findings increase our structural understanding of the folded P-loop conformation of c-MET and provide a sound structural and chemical basis for further investigation of this underexplored yet potentially therapeutically exploitable conformational state.

View Article and Find Full Text PDF

Many small molecule inhibitors of the cMET receptor tyrosine kinase have been evaluated in clinical trials for the treatment of cancer and resistance-conferring mutations of cMET are beginning to be reported for a number of such compounds. There is now a need to understand specific cMET mutations at the molecular level, particularly concerning small molecule recognition. Toward this end, we report here the first crystal structures of the recent clinically observed resistance-conferring D1228V cMET mutant in complex with small molecule inhibitors, along with a crystal structure of wild-type cMET bound by the clinical compound savolitinib and supporting cellular, biochemical, and biophysical data.

View Article and Find Full Text PDF

N-Acetylspermine oxidase (APAO) catalyzes the conversion of N-acetylspermine or N-acetylspermidine to spermidine or putrescine, respectively, with concomitant formation of N-acetyl-3-aminopropanal and hydrogen peroxide. Here we present the structure of murine APAO in its oxidized holo form and in complex with substrate. The structures provide a basis for understanding molecular details of substrate interaction in vertebrate APAO, highlighting a key role for an asparagine residue in coordinating the N-acetyl group of the substrate.

View Article and Find Full Text PDF