Publications by authors named "Louisa Wirthlin"

This study describes a new mechanism controlling the production of alternatively spliced isoforms of type II procollagen (Col2a1) in vivo. During chondrogenesis, precursor chondrocytes predominantly produce isoforms containing alternatively spliced exon 2 (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes. We previously identified an additional Col2a1 isoform containing a truncated exon 2 and premature termination codons in exon 6 (type IIC).

View Article and Find Full Text PDF

Until now, no biological tools have been available to determine if a cross-linked collagen fibrillar network derived entirely from type IIA procollagen isoforms, can form in the extracellular matrix (ECM) of cartilage. Recently, homozygous knock-in transgenic mice (Col2a1(+ex2), ki/ki) were generated that exclusively express the IIA procollagen isoform during post-natal development while type IIB procollagen, normally present in the ECM of wild type mice, is absent. The difference between these Col2a1 isoforms is the inclusion (IIA) or exclusion (IIB) of exon 2 that is alternatively spliced in a developmentally regulated manner.

View Article and Find Full Text PDF

There is compelling in vivo evidence from reports on human genetic mutations and transgenic mice that some microRNAs (miRNAs) play an important functional role in regulating skeletal development and growth. A number of published in vitro studies also point toward a role for miRNAs in controlling chondrocyte gene expression and differentiation. However, information on miRNAs that may regulate a specific phase of chondrocyte differentiation (i.

View Article and Find Full Text PDF

During skeletal development, the onset of chondrogenic differentiation is marked by expression of the α1(II) procollagen (Col2a1) gene. Exon 2 of Col2a1 codes for a cysteine-rich von Willebrand factor C-like domain. Chondroprogenitors express the exon 2-containing IIA and IID splice forms by utilizing adjacent 5' splice sites separated by 3 base pairs.

View Article and Find Full Text PDF

The present study describes the generation of a knock-in mouse model to address the role of type II procollagen (Col2a1) alternative splicing in skeletal development and maintenance. Alternative splicing of Col2a1 precursor mRNA is a developmentally-regulated event that only occurs in chondrogenic tissue. Normally, chondroprogenitor cells synthesize predominantly exon 2-containing mRNA isoforms (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes.

View Article and Find Full Text PDF

Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders. They have been extensively tested and proven effective in preclinical studies for these and many other disorders. There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington's disease and amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Immune-deficient mouse models of liver damage allow examination of human stem cell migration to sites of damage and subsequent contribution to repair and survival. In our studies, in the absence of a selective advantage, transplanted human stem cells from adult sources did not robustly become hepatocytes, although some level of fusion or hepatic differentiation was documented. However, injected stem cells did home to the injured liver tissue and release paracrine factors that hastened endogenous repair and enhanced survival.

View Article and Find Full Text PDF

Serious adverse events in some human gene therapy clinical trials have raised safety concerns when retroviral or lentiviral vectors are used for gene transfer. We evaluated the potential for generating replication-competent retrovirus (RCR) and assessed the risk of occurrence of adverse events in an in vivo system. Human hematopoietic stem and progenitor cells (HSCs) and mesenchymal stem cells (MSCs) transduced with two different Moloney murine leukemia virus (MoMuLV)-based vectors were cotransplanted into a total of 481 immune-deficient mice (that are unable to reject cells that become transformed), and the animals were monitored for 18 months.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stem cells (MSCs) are a promising platform for cell- and gene-based treatment of inherited and acquired disorders. We recently showed that human MSCs distribute widely in a murine xenotransplantation model. In the current study, we have determined the distribution, persistence, and ability of lentivirally transduced human MSCs to express therapeutic levels of enzyme in a xenotransplantation model of human disease (nonobese diabetic severe combined immunodeficient mucopolysaccharidosis type VII [NOD-SCID MPSVII]).

View Article and Find Full Text PDF

This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long-term cultures. Support protocols describe methods for maintenance of vector-producing fibroblasts (VPF) and supernatant collection from these cells, screening medium components for the ability to support hematopoietic cell growth, and establishing colonies from long-term cultures.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation has traditionally been used to reconstitute blood cell lineages that had formed abnormally because of genetic mutations, or that had been eradicated to treat a disease such as leukemia. However, in recent years, much attention has been paid to the new concept of "stem cell plasticity," and the hope that stem cells could be used to repair damaged tissues generated immense excitement. The field is now in a more realistic and critical period of intense investigation and the concept of cell fusion to explain some of the observed effects has been shown after specific types of damage in liver and muscle, both organs that contain a high number of multinucleate cells.

View Article and Find Full Text PDF

Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However, development of cell-based regenerative therapies has been hindered by the lack of preclinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/mucopolysaccharidosis type VII mice, we characterized the distribution of lineage-depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase (ALDH) activity with CD133 coexpression.

View Article and Find Full Text PDF

AMD3100 inhibits the interaction between SDF-1 and CXCR4, and rapidly mobilizes hematopoietic progenitors for clinical transplantation. However, the repopulating function of human cells mobilized with AMD3100 has not been characterized in comparison to cells mobilized with granulocyte-colony stimulating factor (G-CSF) in the same donor. Therefore, healthy donors were leukapheresed 4 hours after injection with AMD3100; after 10 days of drug clearance the same donor was mobilized with G-CSF, allowing a paired comparison of repopulation by mobilized cells.

View Article and Find Full Text PDF

The potential for human adipose-derived mesenchymal stem cells (AMSC) to traffic into various tissue compartments was examined using three murine xenotransplantation models: nonobese diabetic/severe combined immunodeficient (NOD/SCID), nude/NOD/SCID, and NOD/SCID/MPSVII mice. Enhanced green fluorescent protein was introduced into purified AMSC via retroviral vectors to assist in identification of cells after transplantation. Transduced cells were administered to sublethally irradiated immune-deficient mice through i.

View Article and Find Full Text PDF

The development of novel cell-based therapies requires understanding of distinct human hematopoietic stem and progenitor cell populations. We recently isolated reconstituting hematopoietic stem cells (HSCs) by lineage depletion and purification based on high aldehyde dehydrogenase activity (ALDH(hi)Lin- cells). Here, we further dissected the ALDH(hi)-Lin- population by selection for CD133, a surface molecule expressed on progenitors from hematopoietic, endothelial, and neural lineages.

View Article and Find Full Text PDF

Human hematopoietic stem cells (HSCs) are commonly purified by the expression of cell surface markers such as CD34. Because cell phenotype can be altered by cell cycle progression or ex vivo culture, purification on the basis of conserved stem cell function may represent a more reliable way to isolate various stem cell populations. We have purified primitive HSCs from human umbilical cord blood (UCB) by lineage depletion (Lin(-)) followed by selection of cells with high aldehyde dehydrogenase (ALDH) activity.

View Article and Find Full Text PDF

Glial cell line-derived neurotrophic factor (GDNF), a distant member of the transforming growth factor-beta (TGF-beta) family, is widely expressed in the developing and adult central nervous system (CNS). At present, limited information is available regarding the effects of GDNF in the repair of spinal cord injury (SCI). In the present study, mini-guidance channels containing either: (1) Matrigel (MG, a basement membrane component), (2) Schwann cells (SCs, 120 x 10(6)/ml) in MG (SC-MG), (3) recombinant human GDNF (rhGDNF, 3 microg/microl) in MG (GDNF-MG), and (4) a combination of all three components (GDNF-SC-MG) were grafted into a T9 hemisection-gap lesion in adult rats to examine the effects of GDNF on axonal regeneration and myelination following SCI.

View Article and Find Full Text PDF