Publications by authors named "Louisa Lavergne"

We generally experience a stable visual world in spite of regular disruptions caused by our own movements (saccades, blinks) or by the visual input itself (flashes, occlusions). In trying to understand the mechanisms responsible for this stability, saccades have been particularly well-studied, and a number of peri-saccadic perceptual distortions (spatial and temporal compression, failure to detect target displacement) have been explored. It has been shown that some of these distortions are not saccade specific, but also arise when the visual input is instead abruptly and briefly masked.

View Article and Find Full Text PDF

Our constant eye movements mean that updating processes, such as saccadic remapping, are essential for the maintenance of a stable spatial representation of the world around us. It has been proposed that, rather than continually update a full spatiotopic map, only the location of a few key objects is updated, suggesting that the process is linked to attention. At the same time, mounting evidence links attention to oscillatory neuronal processes.

View Article and Find Full Text PDF

Around the onset of a saccade toward a target, localization judgments are systematically biased toward the saccade endpoint. This perisaccadic compression is thought to be related to transsaccadic reorganization and due to interfering motor signals in visual maps. It has, however, only been investigated for saccades targeting a single target.

View Article and Find Full Text PDF

Saccadic adaptation maintains saccade accuracy and has been studied with targeting saccades, i.e. saccades that bring the gaze to a target, with the classical intra-saccadic step procedure in which the target systematically jumps to a new position during saccade execution.

View Article and Find Full Text PDF

In the temporal vicinity of a saccade onset, visual stability is transiently disrupted and briefly flashed visual stimuli undergo a systematic perceptual mislocalization. Specifically, when a stimulus is flashed around saccade onset, localization judgments are grossly biased toward the saccade endpoint. This peri-saccadic compression increases with saccade amplitude.

View Article and Find Full Text PDF

Saccadic adaptation maintains saccade accuracy and has been studied with the intrasaccadic target displacement procedure: displacing a target backwards (or forwards) during saccade execution gradually decreases (or increases) subsequent saccade amplitude. Adaptation has traditionally been studied with targeting saccades which bring the eyes onto a new object. Within-object saccades take the eye from one position in an object to another position in the same object and have been shown to resist the intrasaccadic target displacement procedure.

View Article and Find Full Text PDF

Previous studies have shown that a saccade is coded in a specific reference frame according to its goal: to aim for a new object or to explore an object which has already been fixated. In a two saccade sequence, the second saccade aiming for a new object is programmed in a retinocentric reference frame in which the spatial location of the second object is stored in spatial memory before the first saccade and updated after its execution. The second saccade exploring the same object is coded in an oculocentric reference frame in which object size is directly transformed into a fixed motor vector, encoded in motor memory before the first saccade and simply applied after its execution.

View Article and Find Full Text PDF