Background: The ChEMBL database is one of a number of public databases that contain bioactivity data on small molecule compounds curated from diverse sources. Incoming compounds are typically not standardised according to consistent rules. In order to maintain the quality of the final database and to easily compare and integrate data on the same compound from different sources it is necessary for the chemical structures in the database to be appropriately standardised.
View Article and Find Full Text PDFELIXIR is a pan-European intergovernmental organisation for life science that aims to coordinate bioinformatics resources in a single infrastructure across Europe; bioinformatics training is central to its strategy, which aims to develop a training community that spans all ELIXIR member states. In an evidence-based approach for strengthening bioinformatics training programmes across Europe, the ELIXIR Training Platform, led by the ELIXIR EXCELERATE Quality and Impact Assessment Subtask in collaboration with the ELIXIR Training Coordinators Group, has implemented an assessment strategy to measure quality and impact of its entire training portfolio. Here, we present ELIXIR's framework for assessing training quality and impact, which includes the following: specifying assessment aims, determining what data to collect in order to address these aims, and our strategy for centralised data collection to allow for ELIXIR-wide analyses.
View Article and Find Full Text PDFIn the last decade, bioinformatics has become an indispensable branch of modern science research, experiencing an explosion in financial support, developed applications and data collection. The growth of the datasets that are emerging from research laboratories, industry, the health sector, etc., are increasingly raising the levels of demand in computing power and storage.
View Article and Find Full Text PDFWorkshops are used to explore a specific topic, to transfer knowledge, to solve identified problems, or to create something new. In funded research projects and other research endeavours, workshops are the mechanism used to gather the wider project, community, or interested people together around a particular topic. However, natural questions arise: how do we measure the impact of these workshops? Do we know whether they are meeting the goals and objectives we set for them? What indicators should we use? In response to these questions, this paper will outline rules that will improve the measurement of the impact of workshops.
View Article and Find Full Text PDFChEMBL is an open large-scale bioactivity database (https://www.ebi.ac.
View Article and Find Full Text PDFDrug Discov Today Technol
July 2015
There is a wealth of valuable chemical information in publicly available databases for use by scientists undertaking drug discovery. However finite curation resource, limitations of chemical structure software and differences in individual database applications mean that exact chemical structure equivalence between databases is unlikely to ever be a reality. The ability to identify compound equivalence has been made significantly easier by the use of the International Chemical Identifier (InChI), a non-proprietary line-notation for describing a chemical structure.
View Article and Find Full Text PDFChEMBL is a large-scale drug discovery database containing bioactivity information primarily extracted from scientific literature. Due to the medicinal chemistry focus of the journals from which data are extracted, the data are currently of most direct value in the field of human health research. However, many of the scientific use-cases for the current data set are equally applicable in other fields, such as crop protection research: for example, identification of chemical scaffolds active against a particular target or endpoint, the de-convolution of the potential targets of a phenotypic assay, or the potential targets/pathways for safety liabilities.
View Article and Find Full Text PDFChEMBL is now a well-established resource in the fields of drug discovery and medicinal chemistry research. The ChEMBL database curates and stores standardized bioactivity, molecule, target and drug data extracted from multiple sources, including the primary medicinal chemistry literature. Programmatic access to ChEMBL data has been improved by a recent update to the ChEMBL web services (version 2.
View Article and Find Full Text PDFChEMBL is an open large-scale bioactivity database (https://www.ebi.ac.
View Article and Find Full Text PDFBioactivity databases are routinely used in drug discovery to look-up and, using prediction tools, to predict potential targets for small molecules. These databases are typically manually curated from patents and scientific articles. Apart from errors in the source document, the human factor can cause errors during the extraction process.
View Article and Find Full Text PDFUniChem is a freely available compound identifier mapping service on the internet, designed to optimize the efficiency with which structure-based hyperlinks may be built and maintained between chemistry-based resources. In the past, the creation and maintenance of such links at EMBL-EBI, where several chemistry-based resources exist, has required independent efforts by each of the separate teams. These efforts were complicated by the different data models, release schedules, and differing business rules for compound normalization and identifier nomenclature that exist across the organization.
View Article and Find Full Text PDFChEMBL is an Open Data database containing binding, functional and ADMET information for a large number of drug-like bioactive compounds. These data are manually abstracted from the primary published literature on a regular basis, then further curated and standardized to maximize their quality and utility across a wide range of chemical biology and drug-discovery research problems. Currently, the database contains 5.
View Article and Find Full Text PDFThe challenge of translating the huge amount of genomic and biochemical data into new drugs is a costly and challenging task. Historically, there has been comparatively little focus on linking the biochemical and chemical worlds. To address this need, we have developed ChEMBL, an online resource of small-molecule SAR (structure-activity relationship) data, which can be used to support chemical biology, lead discovery and target selection in drug discovery.
View Article and Find Full Text PDF