Publications by authors named "Louis Thiry"

Gerasimov . claim that the ability of DM21 to respect fractional charge (FC) and fractional spin (FS) conditions outside of the training set has not been demonstrated in our paper. This is based on (i) asserting that the training set has a ~50% overlap with our bond-breaking benchmark (BBB) and (ii) questioning the validity and accuracy of our other generalization examples.

View Article and Find Full Text PDF

Density functional theory describes matter at the quantum level, but all popular approximations suffer from systematic errors that arise from the violation of mathematical properties of the exact functional. We overcame this fundamental limitation by training a neural network on molecular data and on fictitious systems with fractional charge and spin. The resulting functional, DM21 (DeepMind 21), correctly describes typical examples of artificial charge delocalization and strong correlation and performs better than traditional functionals on thorough benchmarks for main-group atoms and molecules.

View Article and Find Full Text PDF

We present a machine learning algorithm for the prediction of molecule properties inspired by ideas from density functional theory (DFT). Using Gaussian-type orbital functions, we create surrogate electronic densities of the molecule from which we compute invariant "solid harmonic scattering coefficients" that account for different types of interactions at different scales. Multilinear regressions of various physical properties of molecules are computed from these invariant coefficients.

View Article and Find Full Text PDF