We extend our previous work on the energetics and mechanisms of fragmentation in the mass spectrometry of triacylglycerols (TAGs). Previously, we proposed viable mechanisms for the collision-induced fragmentation of lithiated tripropionylglycerol using triple-quadrupole mass spectrometry. In this work, we used a QqLIT mass spectrometer to study both double- and triple-stage spectra from a range of TAGs having acid chains of types AAA (identical acid chains), AAB, ABA, and ABC, with chain lengths of 6-18 carbon atoms; we also studied some TAGs having a single double bond in the Δ-9 position.
View Article and Find Full Text PDFMany methods, often depending on tandem mass spectrometry, have been developed for analysis of complex mixtures of triacylglycerols (TAGs), especially in clinical diagnostics and food authentication. Understanding the fragmentation mechanisms of cationized TAGs has proved problematic. To obtain a better understanding of viable mechanisms, detailed studies including double- and triple-stage tandem mass spectrometry were made using electrospray ionization on lithiated and sodiated tripropanoyl- and trihexanoylglycerols.
View Article and Find Full Text PDFAnalysis of triacylglycerols (TAGs), found as complex mixtures in living organisms, is typically accomplished using liquid chromatography, often coupled to mass spectrometry. TAGs, weak bases not protonated using electrospray ionization, are usually ionized by adduct formation with a cation, including those present in the solvent (e.g.
View Article and Find Full Text PDFRationale: Regioisomeric analysis of triacylglycerols is important in understanding lipid biochemistry and the involvement of lipids in disease and nutrition. The use of calibration plots employing fractional abundances provides a simple and rapid method for such analyses. These plots are believed to be linear, but evidence exists for non-linearity.
View Article and Find Full Text PDFReversed-phase high performance liquid chromatography (RP-HPLC), followed by post-column addition of lithium salts and electrospray ionisation triple-stage mass spectrometry (ESI-MS(3)) of lithiated TAG adducts, is shown to provide a useful method for the positional analysis of triacylglycerols (TAGs) in fish oils containing eicosapentaenoic (EPA, 20:5) and docosahexaenoic acids (DHA, 22:6). One prominent fragmentation pathway in the ESI-MS(3) of these adduct ions involves the loss of a fatty acid from the sn-1/3 position in the first step followed by the loss of an α,β-unsaturated fatty acid from the sn-2 position in the second. Regioisomeric TAGs of the type ABA and AAB produced abundant product ions - [ABA+Li-RACOOH-R'BCHCHCOOH](+) and [AAB+Li-RACOOH-R'ACHCHCOOH](+) - the relative intensities of which were dependent on the position of acyl substituents.
View Article and Find Full Text PDFPolycyclic aromatic sulfur-containing compounds (PASHs) are commonly found in fossil fuels and are of considerable importance in environmental studies. This work presents detailed studies on the fragmentation patterns of radical cations formed from four representative PASHs, benzo[b]thiophene, dibenzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene, using tandem atmospheric pressure chemical ionization mass spectrometry (APCI-MS/MS). Understanding these fragmentation patterns can be a useful aid in the analysis of PASHs employing APCI or electron ionization (EI-MS/MS), either alone or in conjunction with liquid or gas chromatography.
View Article and Find Full Text PDFThe behavior in atmospheric pressure chemical ionization of selected model polycyclic aromatic compounds, pyrene, dibenzothiophene, carbazole, and fluorenone, was studied in the solvents acetonitrile, methanol, and toluene. Relative ionization efficiency and sensitivity were highest in toluene and lowest in methanol, a mixture of molecular ions and protonated molecules was observed in most instances, and interferences between analytes were detected at higher concentrations. Such interferences were assumed to be caused by a competition among analyte molecules for a limited number of reagent ions in the plasma.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
September 2008
Software, available at no cost on the Internet, is described which uses polynomial expansion algorithms to calculate the isotope patterns for precursor ion, neutral loss, and MSn product ion tandem mass spectra. Such information is useful for determining product ion and neutral loss composition, identification of analytes in complex samples, deconvolution of overlapping spectra, and correction of peak heights or areas in quantitative analysis. The effect of less than unit mass resolution on the isotope patterns is described and experimental examples of the use of the software are presented.
View Article and Find Full Text PDFDetailed studies have been made using different source gases and solvents in a Micromass Quattro mass spectrometer under positive ion atmospheric pressure chemical ionization conditions. The major background ions from nitrogen, air, or carbon dioxide were investigated by tandem mass spectrometry, followed by similar studies on solvents commonly employed in normal- and reversed-phase high-performance liquid chromatography, namely, water-acetonitrile, acetonitrile, and dichloromethane, with nitrogen, air, or carbon dioxide; hydrocarbon solvents were studied using nitrogen. Spectra were interpreted in terms of the gases, solvents, and their impurities.
View Article and Find Full Text PDFThe response of atmospheric pressure chemical ionization (APCI) mass spectrometry to selected polycyclic aromatic compounds (PACs) was examined in a Micromass Quattro atmospheric pressure ion source as a function of both solvents and source gases. Typical PACs found in petroleum samples were represented by mixtures of naphthalene, fluorene, phenanthrene, pyrene, fluoranthene, chrysene, triphenylene, perylene, carbazole, dibenzothiophene, and 9-phenanthrol. A large range of different gases in the APCI source was studied, with emphasis on nitrogen, air, and carbon dioxide.
View Article and Find Full Text PDF