Publications by authors named "Louis Locco"

Article Synopsis
  • * To streamline this process, researchers can start with a smaller subset of compounds and use virtual screening methods to prioritize which additional compounds to test, combining multiple screening techniques for better results.
  • * A new method of combining these prioritizations was tested and showed to retrieve significantly more active compounds compared to using a single approach, improving the efficiency of drug discovery and guiding future screening strategies.
View Article and Find Full Text PDF

Gene silencing by RNA interference has become a powerful tool to help identify genes that regulate biological processes. However, the complexity of the biology probed and the incomplete validation of the reagents used make it difficult to interpret the results of genome-wide siRNA screens. To address this challenge and maximize the return on the efforts required for validating genomic screen hits, the screening strategy must be designed to increase the robustness of the primary screening hits and include assays that inform on the mechanism of action of the knocked-down transcripts.

View Article and Find Full Text PDF

High-throughput siRNA screens are now widely used for identifying novel drug targets and mapping disease pathways. Despite their popularity, there remain challenges related to data variability, primarily due to measurement errors, biological variance, uneven transfection efficiency, the efficacy of siRNA sequences, or off-target effects, and consequent high false discovery rates. Data variability can be reduced if siRNA screens are performed in replicate.

View Article and Find Full Text PDF

High-throughput screening (HTS) of large-scale RNA interference (RNAi) libraries has become an increasingly popular method of functional genomics in recent years. Cell-based assays used for RNAi screening often produce small dynamic ranges and significant variability because of the combination of cellular heterogeneity, transfection efficiency, and the intrinsic nature of the genes being targeted. These properties make reliable hit selection in the RNAi screen a difficult task.

View Article and Find Full Text PDF

RNA interference (RNAi), combined with the availability of genome sequences, provides an unprecedented opportunity for the massive and parallel investigations of gene function. Small interfering RNA (siRNA) represents a popular and quick approach of RNAi for in vitro loss-of-function genetic screens. Efficient transfection of siRNA is critical for unambiguous interpretation of screen results and thus overall success of any siRNA screen.

View Article and Find Full Text PDF

RNA interference technology allows the systematic genetic analysis of the molecular alterations in cancer cells and how these alterations affect response to therapies. Here we used small interfering RNA (siRNA) screens to identify genes that enhance the cytotoxicity (enhancers) of established anticancer chemotherapeutics. Hits identified in drug enhancer screens of cisplatin, gemcitabine, and paclitaxel were largely unique to the drug being tested and could be linked to the drug's mechanism of action.

View Article and Find Full Text PDF

A series of 6H-benzo[c]chromen-6-one and 6H-benzo[c]chromene derivatives were prepared, and the affinity and selectivity for ERalpha and ERbeta was measured. Many of the analogs were found to be potent and selective ERbeta agonists. Bis hydroxyl at positions 3 and 8 is essential for activity in a HTRF coactivator recruitment assay.

View Article and Find Full Text PDF