IQGAP1 is a multidomain scaffold protein involved in many cellular processes. We have determined the crystal structure of an N-terminal fragment spanning residues 1-191 (CHDF hereafter) that contains the entire calponin homology domain. The structure of the CHDF is very similar to those of other type 3 calponin homology domains like those from calponin, Vav, and the yeast IQGAP1 ortholog Rng2.
View Article and Find Full Text PDFIn signaling, Rho-family GTPases bind effector proteins and alter their behavior. Here we present the crystal structure of Cdc42·GTP bound to the GTPase-activating protein (GAP)-related domain (GRD) of IQGAP2. Four molecules of Cdc42 are bound to two GRD molecules, which bind each other in a parallel dimer.
View Article and Find Full Text PDFSecretion of effector proteins into the eukaryotic host cell is required for Chlamydia trachomatis virulence. In the infection process, Scc1 and Scc4, two chaperones of the type III secretion (T3S) system, facilitate secretion of the important effector and plug protein, CopN, but little is known about the details of this event. Here we use biochemistry, mass spectrometry, nuclear magnetic resonance spectroscopy, and genetic analyses to characterize this trimolecular event.
View Article and Find Full Text PDFBackground: Many antibody crystal structures have been solved. Structural modeling programs have been developed that utilize this information to predict 3-D structures of an antibody based upon its sequence. Because of the problem of self-reference, the accuracy and utility of these predictions can only be tested when a new structure has not yet been deposited in the Protein Data Bank.
View Article and Find Full Text PDFIQGAP1 is a 190-kDa molecular scaffold containing several domains required for interaction with numerous proteins. One domain is homologous to Ras GTPase-activating protein (GAP) domains. However, instead of accelerating hydrolysis of bound GTP on Ras IQGAP1, using its GAP-related domain (GRD) binds to Cdc42 and Rac1 and stabilizes their GTP-bound states.
View Article and Find Full Text PDFA series of 13 1,4-diarylpiperazines has been prepared, evaluated for antileishmanial activity and their binding affinity to DNA was measured. Among these compounds, 1,4-bis[4-(1H-benzimidazol-2-yl)phenyl]piperazine (14) emerged as the most active compound with an IC(50) value of 0.41 microM which is about sevenfold more potent than pentamidine.
View Article and Find Full Text PDFBioorg Med Chem Lett
March 2003
Four new peptidyl aldehydes bearing proline mimetics at the P(2)-position were synthesized and studied as inhibitors of calpain I, cathepsin B, and selected serine proteases. The ring size of the P(2)-constraining residue influenced the inhibitory potency and selectivity of the compounds for calpain I compared to the other proteases.
View Article and Find Full Text PDF