E1A binding protein (p300) and CREB binding protein (CBP) are two highly homologous and multidomain histone acetyltransferases. These two proteins are involved in many cellular processes by acting as coactivators of a large number of transcription factors. Dysregulation of p300/CBP has been found in a variety of cancers and other diseases, and inhibition has been shown to decrease Myc expression.
View Article and Find Full Text PDFElevated expression of the -MYC oncogene is one of the most common abnormalities in human cancers. Unfortunately, efforts to identify pharmacological inhibitors that directly target MYC have not yet yielded a drug-like molecule due to the lack of any known small molecule binding pocket in the protein, which could be exploited to disrupt MYC function. We have recently described a strategy to target MYC indirectly, where a screening effort designed to identify compounds that can rapidly decrease endogenous -MYC protein levels in a amplified cell line led to the discovery of a compound series that phenocopies -MYC knockdown by siRNA.
View Article and Find Full Text PDFThe histone H3-lysine 27 (H3K27) methyltransferase EZH2 plays a critical role in regulating gene expression, and its aberrant activity is linked to the onset and progression of cancer. As part of a drug discovery program targeting EZH2, we have identified highly potent, selective, SAM-competitive, and cell-active EZH2 inhibitors, including GSK926 (3) and GSK343 (6). These compounds are small molecule chemical tools that would be useful to further explore the biology of EZH2.
View Article and Find Full Text PDFIn eukaryotes, post-translational modification of histones is critical for regulation of chromatin structure and gene expression. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) and is involved in repressing gene expression through methylation of histone H3 on lysine 27 (H3K27). EZH2 overexpression is implicated in tumorigenesis and correlates with poor prognosis in several tumour types.
View Article and Find Full Text PDFHistone methyltransferases (HMT) catalyze the methylation of histone tail lysines, resulting in changes in gene transcription. Misregulation of these enzymes has been associated with various forms of cancer, making this target class a potential new area for the development of novel chemotherapeutics. EZH2 is the catalytic component of the polycomb group repressive complex (PRC2), which selectively methylates histone H3 lysine 27 (H3K27).
View Article and Find Full Text PDFThe synthesis and evaluation of tetrasubstituted aminopyridines, bearing novel azaindazole hinge binders, as potent AKT inhibitors are described. Compound 14c was identified as a potent AKT inhibitor that demonstrated reduced CYP450 inhibition and an improved developability profile compared to those of previously described trisubstituted pyridines. It also displayed dose-dependent inhibition of both phosphorylation of GSK3beta and tumor growth in a BT474 tumor xenograft model in mice.
View Article and Find Full Text PDFOverexpression of AKT has an antiapoptotic effect in many cell types, and expression of dominant negative AKT blocks the ability of a variety of growth factors to promote survival. Therefore, inhibitors of AKT kinase activity might be useful as monotherapy for the treatment of tumors with activated AKT. Herein, we describe our lead optimization studies culminating in the discovery of compound 3g (GSK690693).
View Article and Find Full Text PDFSmall molecule antagonists of protein-protein interactions represent a particular challenge for pharmaceutical discovery. One approach to finding molecules that can disrupt these interactions is to seek mimics of common protein structure motifs. We present an analysis of how molecules based on the 1,4-benzodiazepine-2,5-dione scaffold serve to mimic the side-chains presented by the hydrophobic face of two turns of an alpha-helix derived from the tumor suppressor protein p53, and thus antagonize the HDM2-p53 protein-protein binding interaction.
View Article and Find Full Text PDFGuided by structure-based drug design, modification of the 1,4-benzodiazepin-2,5-dione lead compound 1 resulted in the discovery of 19, a potent and orally bioavailable antagonist of the HDM2-p53 protein-protein interaction (FP IC50 = 0.7 microM, F approximately 100%).
View Article and Find Full Text PDFThe activity and stability of the p53 tumor suppressor are regulated by the human homologue of the mouse double minute 2 (Hdm2) oncoprotein. It has been hypothesized that small molecules disrupting the Hdm2:p53 complex would allow for the activation of p53 and result in growth suppression. We have identified small-molecule inhibitors of the Hdm2:p53 interaction using our proprietary ThermoFluor microcalorimetry technology.
View Article and Find Full Text PDFHDM2 binds to an alpha-helical transactivation domain of p53, inhibiting its tumor suppressive functions. A miniaturized thermal denaturation assay was used to screen chemical libraries, resulting in the discovery of a novel series of benzodiazepinedione antagonists of the HDM2-p53 interaction. The X-ray crystal structure of improved antagonists bound to HDM2 reveals their alpha-helix mimetic properties.
View Article and Find Full Text PDFA library of 1,4-benzodiazepine-2,5-diones was screened for binding to the p53-binding domain of HDM2 using Thermofluor, a miniaturized thermal denaturation assay. The hits obtained were shown to bind to HDM2 in the p53-binding pocket using a fluorescence polarization (FP) peptide displacement assay. The potency of the series was optimized, leading to sub-micromolar antagonists of the p53-HDM2 interaction.
View Article and Find Full Text PDF