Translesion DNA synthesis is an essential process that helps resume DNA replication at forks stalled near bulky adducts on the DNA. Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon (PAH) that can be metabolically activated to benzo[a]pyrene diol epoxide (BPDE), which then can react with DNA to form carcinogenic DNA adducts. Here, we have used single-molecule florescence resonance energy transfer (smFRET) experiments, classical molecular dynamics simulations, and nucleotide incorporation assays to investigate the mechanism by which the model Y-family polymerase, Dpo4, bypasses a (+)-cis-B[a]P-N -dG adduct in DNA.
View Article and Find Full Text PDFFaithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase.
View Article and Find Full Text PDFNucleic Acids Res
November 2015
Bulky DNA damage inhibits DNA synthesis by replicative polymerases and often requires the action of error prone bypass polymerases. The exact mechanism governing adduct-induced mutagenesis and its dependence on the DNA sequence context remains unclear. In this work, we characterize Dpo4 binding conformations and activity with DNA templates modified with the carcinogenic DNA adducts, 2-aminofluoene (AF) or N-acetyl-2-aminofluorene (AAF), using single-molecule FRET (smFRET) analysis and DNA synthesis extension assays.
View Article and Find Full Text PDFY-family DNA polymerases play a crucial role in translesion DNA synthesis. Here, we have characterized the binding kinetics and conformational dynamics of the Y-family polymerase Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) using single-molecule fluorescence. We find that in the absence of dNTPs, the binary complex shuttles between two different conformations within ∼1 s.
View Article and Find Full Text PDFNucleic Acids Res
September 2013
DNA polymerases must accurately replicate DNA to maintain genome integrity. Carcinogenic adducts, such as 2-aminofluorene (AF) and N-acetyl-2-aminofluorene (AAF), covalently bind DNA bases and promote mutagenesis near the adduct site. The mechanism by which carcinogenic adducts inhibit DNA synthesis and cause mutagenesis remains unclear.
View Article and Find Full Text PDFThe mechanism by which DNA polymerases achieve their extraordinary accuracy has been intensely studied because of the linkage between this process and mutagenesis and carcinogenesis. Here, we have used single-molecule fluorescence microscopy to study the process of nucleotide selection and exonuclease action. Our results show that the binding of Escherichia coli DNA polymerase I (Klenow fragment) to a primer-template is stabilized by the presence of the next correct dNTP, even in the presence of a large excess of the other dNTPs and rNTPs.
View Article and Find Full Text PDFDNA replication is vital for an organism to proliferate and lying at the heart of this process is the enzyme DNA polymerase. Most DNA polymerases have a similar three dimensional fold, akin to a human right hand, despite differences in sequence homology. This structural homology would predict a relatively unvarying mechanism for DNA synthesis yet various polymerases exhibit markedly different properties on similar substrates, indicative of each type of polymerase being prescribed to a specific role in DNA replication.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2009
The catalytic mechanism of DNA polymerases involves multiple steps that precede and follow the transfer of a nucleotide to the 3'-hydroxyl of the growing DNA chain. Here we report a single-molecule approach to monitor the movement of E. coli DNA polymerase I (Klenow fragment) on a DNA template during DNA synthesis with single base-pair resolution.
View Article and Find Full Text PDFBenzo[a]pyrene (B[a]P) is a potent environmental carcinogen that is metabolized into diol epoxides that react with exocyclic amines in DNA. These DNA adducts have been shown to block DNA replication by high-fidelity polymerases and induce both base substitution and frame-shift mutations. To improve our understanding of the molecular mechanism of B[a]P-induced mutagenesis, a fluorescence resonance energy transfer (FRET) method was developed in which the (+)- or (-)-trans-anti-B[a]P-N(2)-dG adducts, positioned in the active site of DNA polymerase I (Klenow fragment), serve as donor fluorophores to an acceptor molecule positioned on the DNA primer strand.
View Article and Find Full Text PDFThe well-studied aromatic amine carcinogen, N-2-acetylaminofluorene (AAF), forms adducts at the C8 position of guanine in DNA. Unlike replicative polymerases, Y-family polymerases have been shown to have the ability to bypass such bulky DNA lesions. To better understand the mechanism of translesion synthesis by the yeast DNA polymerase eta (yPoleta), a gel retardation technique was used to measure equilibrium dissociation constants of this polymerase for unmodified DNA or DNA containing dG-C8-AAF or the related deacylated dG-C8-AF adduct.
View Article and Find Full Text PDFUnderstanding how carcinogenic DNA adducts compromise accurate DNA replication is an important goal in cancer research. A central part of these studies is to determine the molecular mechanism that allows a DNA polymerase to incorporate a nucleotide across from and past a bulky adduct in a DNA template. To address the importance of polymerase architecture on replication across from this type of bulky DNA adduct, three active-site mutants of Escherichia coli DNA polymerase I (Klenow fragment) were used to study DNA synthesis on DNA modified with the carcinogen N-2-aminofluorene (AF).
View Article and Find Full Text PDFN-Acetyl-2-aminofluorene (AAF) is a chemical carcinogen that reacts with guanines at the C8 position in DNA to form a structure that interferes with DNA replication. In bacteria, the NarI restriction enzyme recognition sequence (G1G2CG3CC) is a very strong mutational hot spot when an AAF adduct is positioned at G3 of this sequence, causing predominantly a -2 frameshift GC dinucleotide deletion mutation. In this study, templates were constructed that contained an AAF adduct at this position, and primers of different lengths were prepared such that the primer ended one nucleotide before or opposite or one nucleotide after the adduct site.
View Article and Find Full Text PDFThe carcinogen 2-acetylaminofluorene forms two major DNA adducts: N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) and its deacetylated derivative, N-(2'-deoxyguanosin-8-yl)-2-aminofluorene (dG-AF). Although the dG-AAF and dG-AF adducts are distinguished only by the presence or absence of an acetyl group, they have profoundly different effects on DNA replication. dG-AAF poses a strong block to DNA synthesis and primarily induces frameshift mutations in bacteria, resulting in the loss of one or two nucleotides during replication past the lesion.
View Article and Find Full Text PDFThe molecular mechanism that allows a polymerase to incorporate a nucleotide opposite a DNA lesion is not well-understood. One way to study this process is to characterize the altered molecular interactions that occur between the polymerase and a damaged template. Prior studies have determined the polymerase-template dissociation constants and used kinetic analyses and a protease digestion assay to measure the effect of various DNA adducts positioned in the active site of Klenow fragment (KF).
View Article and Find Full Text PDFThe presence of bulky adducts in DNA is known to interfere with DNA replication not only at the site of the lesion but also at positions up to 5 nucleotides past the adduct location. Kinetic studies of primer extension by exonuclease-deficient E. coli DNA polymerase I (Klenow fragment) (KF) when (+)-trans- or (+)-cis-B[a]P-N(2)-dG adducts were positioned in the double-stranded region of the primer-templates showed that both stereoisomers significantly block downstream replication.
View Article and Find Full Text PDF