Organizations, researchers, and software increasingly use automatic speech recognition (ASR) to transcribe speech to text. However, ASR can be less accurate for (i.e.
View Article and Find Full Text PDFAutomated video interviews (AVIs) that use machine learning (ML) algorithms to assess interviewees are increasingly popular. Extending prior AVI research focusing on noncognitive constructs, the present study critically evaluates the possibility of assessing cognitive ability with AVIs. By developing and examining AVI ML models trained to predict measures of three cognitive ability constructs (i.
View Article and Find Full Text PDFPersonal qualities like prosocial purpose and leadership predict important life outcomes, including college success. Unfortunately, the holistic assessment of personal qualities in college admissions is opaque and resource intensive. Can artificial intelligence (AI) advance the goals of holistic admissions? While cost-effective, AI has been criticized as a "black box" that may inadvertently penalize already disadvantaged subgroups when used in high-stakes settings.
View Article and Find Full Text PDFProc ACM Hum Comput Interact
April 2021
Effective ways to measure employee job satisfaction are fraught with problems of scale, misrepresentation, and timeliness. Current methodologies are limited in capturing subjective differences in expectations, needs, and values at work, and they do not lay emphasis on demographic differences, which may impact people's perceptions of job satisfaction. This study proposes an approach to assess job satisfaction by leveraging large-scale social media data.
View Article and Find Full Text PDFOrganizations are increasingly adopting automated video interviews (AVIs) to screen job applicants despite a paucity of research on their reliability, validity, and generalizability. In this study, we address this gap by developing AVIs that use verbal, paraverbal, and nonverbal behaviors extracted from video interviews to assess Big Five personality traits. We developed and validated machine learning models within (using nested cross-validation) and across three separate samples of mock video interviews (total = 1,073).
View Article and Find Full Text PDF