Publications by authors named "Louis H Cohen"

Bile acid sequestrants (BASs) are cholesterol-lowering drugs that also affect hyperglycemia. The mechanism by which BASs exert these and other metabolic effects beyond cholesterol lowering remains poorly understood. The present study aimed to investigate the effects of a BAS, colestilan, on body weight, energy expenditure, and glucose and lipid metabolism and its mechanisms of action in high-fat-fed hyperlipidemic APOE*3 Leiden (E3L) transgenic mice.

View Article and Find Full Text PDF

The enzyme protein:geranylgeranyl transferase-1 (PGGT-1 or GGTase-I) catalyzes the geranylgeranylation of cysteine residues near the C-termini of a variety of proteins, including most monomeric GTP binding precursor proteins belonging to the Rho, Rac and Rap subfamilies. These proteins are involved in signaling pathways controlling important processes such as cell differentiation and growth. In the framework of the development of therapeutics against disorders associated with aberrant cell proliferation, the interference with these signal transduction cascades has been a major focus of investigation.

View Article and Find Full Text PDF

1-{7-[(1-(3,5-Diethoxyphenyl)-3-{[(3,5-difluorophenyl)(ethyl)amino]carbonyl}-4-oxo-1,4-dihydroquinolin-7-yl)oxy]heptyl}-1-methylpiperidinium bromide, R-146224, is a potent, specific ileum apical sodium-dependent bile acid transporter (ASBT) inhibitor; concentrations required for 50% inhibition of [3H]taurocholate uptake in human ASBT-expressing HEK-293 cells and hamster ileum tissues were 0.023 and 0.73 microM, respectively.

View Article and Find Full Text PDF

A combinatorial synthesis of oligopeptide analogues and their evaluation as protein:geranylgeranyl transferase inhibitors is presented. The combinatorial strategy is based on the random mutation, in each new generation, of one of any of the four amino acid building blocks of which the most effective compounds of the previous generation are assembled. In this way, a progressive improvement of the average inhibitory activity was observed until the fifth generation.

View Article and Find Full Text PDF

Ca(1)a(2)L analogues, having the central dipeptide a(1)a(2) replaced by a sugar amino acid, were provided at the N-terminal end directly or via a spacer with a lipid. The inhibitory potency toward PGGT-1 of the set of lipophilic Ca(1)a(2)L analogues was improved in comparison with the original analogues, 1 and 2. The most potent inhibitors, 39 and 40, were found to inhibit PGGT-1 with an IC(50)-value of 12.

View Article and Find Full Text PDF

Eleven analogues of the C-terminal Ca(1)a(2)X motif found in natural substrates of the prenyl transferases PFT and PGGT-1 were synthesized and evaluated for their inhibition potency and selectivity against PFT and PGGT-1. Replacement of the central dipeptide part a(1)a(2) by a benzylated sugar amino acid resulted in a good and highly selective PFT inhibitor (8, IC(50) = 250 +/- 20 nM). The methyl ester of 8 (13) selectively inhibited protein farnesylation in cultured cells.

View Article and Find Full Text PDF

The synthesis and first antimicrobial evaluation of farnesyl diphosphate mimetics are described. Several analogues (10, 12, 13, and 20) are inhibitors of Candida albicans, Shizosaccharomyces pombe, and Saccharomyces cerevisiae. The activities of analogues 10, 12, and 13, which contain a omega-phenyl moiety and a diphosphate isostere, are not attributable to inhibition of sterol biosynthesis via squalene synthase.

View Article and Find Full Text PDF

In the present study, we have analyzed the response of human smooth muscle cell (SMC)s to oxidative stress, in terms of recruitment of key elements of the stress-activated protein kinase (SAPK) pathway, such as Rac(1), p38, and the small heat shock protein (HSP)27. The level of expression of three small HSPs, alphaB-crystallin, HSP20, HSP27, as well as the phosphorylation levels of HSP27 and p38, were higher in cultured, asynchronously growing SMCs originating from left interior mammary artery (LIMA) than those originating from aorta, saphenous vein, and umbilical vein, validating the choice of SMCs from LIMA as a model system in our study. In synchronized, quiescent SMCs from LIMA, oxidative stress (H(2)O(2) stimulation)-induced membrane translocation of Rac(1), p38 phosphorylation, membrane translocation, and phosphorylation of HSP27.

View Article and Find Full Text PDF