Publications by authors named "Louis G Hector"

We present computed datasets on changes in the lattice parameter and elastic stiffness coefficients of bcc Fe due to substitutional Al, B, Cu, Mn, and Si solutes, and octahedral interstitial C and N solutes. The data is calculated using the methodology based on density functional theory (DFT) presented in Ref. (M.

View Article and Find Full Text PDF

The mechanism of Li(+) transport through the solid electrolyte interphase (SEI), a passivating film on electrode surfaces, has never been clearly elucidated despite its overwhelming importance to Li-ion battery operation and lifetime. The present paper develops a multiscale theoretical methodology to reveal the mechanism of Li(+) transport in a SEI film. The methodology incorporates the boundary conditions of the first direct diffusion measurements on a model SEI consisting of porous (outer) organic and dense (inner) inorganic layers (similar to typical SEI films).

View Article and Find Full Text PDF

Transition metal atom M (M = Cu, Ag, Au) adsorption on CeO(2)(110), a technologically important catalytic support surface, is investigated with density-functional theory within the DFT+U formalism. A set of model configurations was generated by placing M at three surface sites, viz., on top of an O, an O bridge site, and a Ce bridge site.

View Article and Find Full Text PDF

Despite significant advances in computational materials science, a quantitative, parameter-free prediction of the mechanical properties of alloys has been difficult to achieve from first principles. Here, we present a new analytic theory that, with input from first-principles calculations, is able to predict the strengthening of aluminium by substitutional solute atoms. Solute-dislocation interaction energies in and around the dislocation core are first calculated using density functional theory and a flexible-boundary-condition method.

View Article and Find Full Text PDF

Dynamic strain ageing (DSA) is the phenomenon in which solute atoms diffuse around dislocations and retard dislocation motion, leading to negative strain-rate sensitivity (nSRS) and thus to material instabilities during processing, an important issue in commercial metal alloys. Here, we show the mechanism of DSA and nSRS on experimental strain-rate, temperature and stress scales for Al-Mg to be single-atomic-hop motion of solutes from the compression to the tension side of a dislocation core. We derive an analytic expression for the strengthening versus strain rate and temperature that justifies widely used phenomenological forms, provides specific dependences of the parameters on material properties and is supported by atomistic kinetic Monte Carlo simulations.

View Article and Find Full Text PDF