Background: Malaria remains a substantial public health burden among young children in sub-Saharan Africa and a highly efficacious vaccine eliciting a durable immune response would be a useful tool for controlling malaria. R21 is a malaria vaccine comprising nanoparticles, formed from a circumsporozoite protein and hepatitis B surface antigen (HBsAg) fusion protein, without any unfused HBsAg, and is administered with the saponin-based Matrix-M adjuvant. This study aimed to assess the safety and immunogenicity of the malaria vaccine candidate, R21, administered with or without adjuvant Matrix-M in adults naïve to malaria infection and in healthy adults from malaria endemic areas.
View Article and Find Full Text PDFBackground: R21 is a novel malaria vaccine, composed of a fusion protein of the malaria circumsporozoite protein and hepatitis B surface antigen. Following favourable safety and immunogenicity in a phase 1 study, we aimed to assess the efficacy of R21 administered with Matrix-M (R21/MM) against clinical malaria in adults from the UK who were malaria naive in a controlled human malaria infection study.
Methods: In this open-label, partially blinded, phase 1-2A controlled human malaria infection study undertaken in Oxford, Southampton, and London, UK, we tested five novel vaccination regimens of R21/MM.
Hum Vaccin Immunother
December 2024
COVID-19 remains a global public health issue and an improved understanding of vaccine performance in immunocompromised individuals, including people living with HIV (PLWH), is needed. Initial data from the present study's pre-crossover/booster phase were previously reported. This phase 2a/b clinical trial in South Africa (2019nCoV-501/NCT04533399) revisits 1:1 randomly assigned HIV-negative adults (18-84 years) and medically stable PLWH (18-64 years) who previously received two NVX-CoV2373 doses (5 μg recombinant Spike protein with 50 μg Matrix-M™ adjuvant) or placebo.
View Article and Find Full Text PDFCurrently available seasonal influenza vaccines confer variable protection due to antigenic changes resulting from the accumulation of diverse mutations. The analysis of new seasonal influenza vaccines is challenging in part due to the limitations of the traditional hemagglutination inhibition (HAI) assay with A/H3N2 strains. An improved and objective novel HAI assay was developed with recombinant virus-like particles (VLPs) and an egg-derived virus as agglutinins, the oseltamivir treatment of VLPs, human red blood cells, and using an automated image reader-based analysis of hemagglutination.
View Article and Find Full Text PDFThe urgency and importance of organizing a global effort to harmonize clinical assay validation specific to the vaccine industry was identified during the drafting of the 2020 White Paper in Bioanalysis due to the lack of clarity and regulatory guidance/guidelines in vaccine immunoassay validation. Indeed, the Workshop on Recent Issues in Bioanalysis (WRIB) issues the White Paper in Bioanalysis yearly, which is one of the high-profile articles of the Journal focused on detailed discussions and recommendations on vaccine assay validation. Since 2017, participation in the WRIB working groups by vaccine assay validation experts and regulators has rapidly increased due to its unique format where industry leaders and regulators can meet and exchange ideas on topics of interest to both groups.
View Article and Find Full Text PDFVaccine-induced immunoglobulin G (IgG) profiles can vary with respect to the predominant subclasses that characterize the response. Among IgG subclasses, IgG4 is reported to have anti-inflammatory properties, but can also exhibit reduced capacity for virus neutralization and activation of Fc-dependent effector functions. Here, we review evidence that IgG4 subclass responses can be disproportionately increased in response to some types of vaccines targeting an array of diseases, including pertussis, HIV, malaria, and COVID-19.
View Article and Find Full Text PDFAs variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge, assessment of vaccine immunogenicity remains a critical factor to support continued vaccination. To this end, an in vitro microneutralization (MN50) assay was validated to quantitate SARS-CoV-2 neutralizing antibodies against prototype and variant strains (Beta, Delta, Omicron BA.1, Omicron BA.
View Article and Find Full Text PDFAs the COVID-19 pandemic continues, variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge. Immunogenicity evaluation of vaccines and identification of correlates of protection for vaccine effectiveness is critical to aid the development of vaccines against emerging variants. Anti-recombinant spike (rS) protein immunoglobulin G (IgG) quantitation in the systemic circulation (serum/plasma) is shown to correlate with vaccine efficacy.
View Article and Find Full Text PDFIntroduction: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in significant morbidity and mortality worldwide. As SARS-CoV-2 moves into endemic status, vaccination remains a key element in protecting the health of individuals, societies, and economies worldwide.
Areas Covered: NVX-CoV2373 (Novavax, Gaithersburg, MD) is a recombinant protein vaccine composed of SARS-CoV-2 spike trimer nanoparticles formulated with saponin-based Matrix-M™ adjuvant (Novavax, Gaithersburg, MD).
Background: NVX-CoV2373 is an efficacious coronavirus disease 2019 (COVID-19) vaccine comprising full-length recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (rS) glycoprotein and Matrix-M adjuvant. Phase 2 of a randomized, placebo-controlled, phase 1/2 trial in healthy adults (18-84 years of age) previously reported good safety/tolerability and robust humoral immunogenicity.
Methods: Participants were randomized to placebo or 1 or 2 doses of 5-µg or 25-µg rS with 50 µg Matrix-M adjuvant 21 days apart.
Matrix-M™ adjuvant is a key component of several novel vaccine candidates. The Matrix-M adjuvant consists of two distinct fractions of saponins purified from the Molina tree, combined with cholesterol and phospholipids to form 40-nm open cage-like nanoparticles, achieving potent adjuvanticity with a favorable safety profile. Matrix-M induces early activation of innate immune cells at the injection site and in the draining lymph nodes.
View Article and Find Full Text PDFEmerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) show immune evasion of vaccine-derived immunity, highlighting the need for better clinical immunogenicity biomarkers. To address this need, an enzyme-linked immunosorbent assay-based, human angiotensin-converting enzyme 2 (hACE2) binding inhibition assay was developed to measure antibodies against the ancestral strain of SARS-CoV-2 and was validated for precision, specificity, linearity, and other parameters. This assay measures the inhibition of SARS-CoV-2 spike (S) protein binding to the receptor, hACE2, by serum from vaccine clinical trials.
View Article and Find Full Text PDFBackground: Respiratory syncytial virus (RSV) can cause serious lung infections in young children and there is currently no available vaccine.
Methods: We used complementary statistical frameworks to analyze 4 RSV serology measurements in mothers and their infants in South Africa who participated in a phase 3 maternal immunization trial of an RSV F protein nanoparticle vaccine as correlates of risk and of protection against different RSV disease endpoints.
Results: We found evidence to support each antibody measurement-encompassing RSV-neutralizing antibodies and F surface glycoprotein-binding antibodies-as an inverse correlate of risk of RSV-associated acute lower respiratory tract infection with severe hypoxia in at least 1 framework, with vaccine-induced fold-rise from the maternal enrollment to day 14 samples of anti-F immunoglobulin G (IgG) binding antibodies having the most consistent evidence.
Influenza A(H7N9) viruses remain as a high pandemic threat. The continued evolution of the A(H7N9) viruses poses major challenges in pandemic preparedness strategies through vaccination. We assessed the breadth of the heterologous neutralizing antibody responses against the 3rd and 5th wave A(H7N9) viruses using the 1st wave vaccine sera from 4 vaccine groups: 1.
View Article and Find Full Text PDFBackground: The recombinant protein-based vaccine, NVX-CoV2373, demonstrated 89.7% efficacy against coronavirus disease 2019 (COVID-19) in a phase 3, randomized, observer-blinded, placebo-controlled trial in the United Kingdom. The protocol was amended to include a blinded crossover.
View Article and Find Full Text PDFBackground: Malaria is a leading cause of morbidity and mortality worldwide. We previously reported the efficacy of the R21/Matrix-M malaria vaccine, which reached the WHO-specified goal of 75% or greater efficacy over 12 months in the target population of African children. Here, we report the safety, immunogenicity, and efficacy results at 12 months following administration of a booster vaccination.
View Article and Find Full Text PDFNVX-CoV2373 is an adjuvanted recombinant full-length SARS-CoV-2 spike trimer protein vaccine demonstrated to be protective against COVID-19 in efficacy trials. Here we demonstrate that vaccinated individuals made CD4+ T cell responses after 1 and 2 doses of NVX-CoV2373, and a subset of individuals made CD8+ T cell responses. Characterization of the vaccine-elicited CD8+ T cells demonstrated IFN-γ production.
View Article and Find Full Text PDFSignificanceStrategies to reduce consumption of antimicrobial drugs are needed to contain the growing burden of antimicrobial resistance. Respiratory syncytial virus (RSV) is a prominent cause of upper and lower respiratory tract infections, as a single agent and in conjunction with bacterial pathogens, and may thus contribute to the burden of both inappropriately treated viral infections and appropriately treated polymicrobial infections involving bacteria. In a double-blind, randomized, placebo-controlled trial, administering an RSV vaccine to pregnant mothers reduced antimicrobial prescribing among their infants by 12.
View Article and Find Full Text PDFBackground: Improved seasonal influenza vaccines for older adults that can induce broadly cross-reactive antibodies and enhanced T-cell responses, particularly against A H3N2 viruses, while avoiding egg-adaptive antigenic changes, are needed. We aimed to show that the Matrix-M-adjuvanted quadrivalent nanoparticle influenza vaccine (qNIV) was immunologically non-inferior to a licensed, standard-dose quadrivalent inactivated influenza vaccine (IIV4) in older adults.
Methods: This was a phase 3 randomised, observer-blinded, active-comparator controlled trial done across 19 US community-based clinical research sites during the 2019-20 influenza season.
Background: Stalled progress in controlling Plasmodium falciparum malaria highlights the need for an effective and deployable vaccine. RTS,S/AS01, the most effective malaria vaccine candidate to date, demonstrated 56% efficacy over 12 months in African children. We therefore assessed a new candidate vaccine for safety and efficacy.
View Article and Find Full Text PDFThe COVID-19 pandemic continues to spread throughout the world with an urgent need for a safe and protective vaccine to effectuate herd protection and control the spread of SARS-CoV-2. Here, we report the development of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) from the full-length spike (S) protein that is stable in the prefusion conformation. NVX-CoV2373 S form 27.
View Article and Find Full Text PDFBackground: Recurrent reports of suboptimal influenza vaccine effectiveness have renewed calls to develop improved, broadly cross-protective influenza vaccines. Here, we evaluated the safety and immunogenicity of a novel, saponin (Matrix-M)-adjuvanted, recombinant hemagglutinin (HA) quadrivalent nanoparticle influenza vaccine (qNIV).
Methods: We conducted a randomized, observer-blind, comparator-controlled (trivalent high-dose inactivated influenza vaccine [IIV3-HD] or quadrivalent recombinant influenza vaccine [RIV4]), safety and immunogenicity trial of qNIV (5 doses/formulations) in healthy adults ≥65 years.
Background: NVX-CoV2373 is a recombinant severe acute respiratory syndrome coronavirus 2 (rSARS-CoV-2) nanoparticle vaccine composed of trimeric full-length SARS-CoV-2 spike glycoproteins and Matrix-M1 adjuvant.
Methods: We initiated a randomized, placebo-controlled, phase 1-2 trial to evaluate the safety and immunogenicity of the rSARS-CoV-2 vaccine (in 5-μg and 25-μg doses, with or without Matrix-M1 adjuvant, and with observers unaware of trial-group assignments) in 131 healthy adults. In phase 1, vaccination comprised two intramuscular injections, 21 days apart.