Background: Malaria remains a substantial public health burden among young children in sub-Saharan Africa and a highly efficacious vaccine eliciting a durable immune response would be a useful tool for controlling malaria. R21 is a malaria vaccine comprising nanoparticles, formed from a circumsporozoite protein and hepatitis B surface antigen (HBsAg) fusion protein, without any unfused HBsAg, and is administered with the saponin-based Matrix-M adjuvant. This study aimed to assess the safety and immunogenicity of the malaria vaccine candidate, R21, administered with or without adjuvant Matrix-M in adults naïve to malaria infection and in healthy adults from malaria endemic areas.
View Article and Find Full Text PDFAs variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge, assessment of vaccine immunogenicity remains a critical factor to support continued vaccination. To this end, an in vitro microneutralization (MN50) assay was validated to quantitate SARS-CoV-2 neutralizing antibodies against prototype and variant strains (Beta, Delta, Omicron BA.1, Omicron BA.
View Article and Find Full Text PDFSignificanceStrategies to reduce consumption of antimicrobial drugs are needed to contain the growing burden of antimicrobial resistance. Respiratory syncytial virus (RSV) is a prominent cause of upper and lower respiratory tract infections, as a single agent and in conjunction with bacterial pathogens, and may thus contribute to the burden of both inappropriately treated viral infections and appropriately treated polymicrobial infections involving bacteria. In a double-blind, randomized, placebo-controlled trial, administering an RSV vaccine to pregnant mothers reduced antimicrobial prescribing among their infants by 12.
View Article and Find Full Text PDFBackground: Respiratory syncytial virus (RSV) is the dominant cause of severe lower respiratory tract infection in infants, with the most severe cases concentrated among younger infants.
Methods: Healthy pregnant women, at 28 weeks 0 days through 36 weeks 0 days of gestation, with an expected delivery date near the start of the RSV season, were randomly assigned in an overall ratio of approximately 2:1 to receive a single intramuscular dose of RSV fusion (F) protein nanoparticle vaccine or placebo. Infants were followed for 180 days to assess outcomes related to lower respiratory tract infection and for 364 days to assess safety.
Objective: Respiratory syncytial virus (RSV) causes significant morbidity and mortality in infants. We are developing an RSV fusion (F) protein nanoparticle vaccine for immunization of third trimester pregnant women to passively protect infants through transfer of RSV-specific maternal antibodies. The present trial was performed to assess the immunogenicity and safety of several formulations of RSV F vaccine in 1-dose or 2-dose schedules.
View Article and Find Full Text PDFBackground: Protection of newborns and young infants against RSV disease via maternal immunization mediated by transplacental transfer of antibodies is under evaluation in third-trimester pregnant women with the RSV recombinant F nanoparticle vaccine (RSV F vaccine). Since the hemichorial placental architecture in guinea pigs and humans is similar, the guinea pig model was employed to assess RSV F vaccine immunogenicity in pregnant sows and to compare RSV-specific maternal antibody levels in their pups.
Methods: Thirty (30) presumptive pregnant guinea pigs were immunized on gestational day 25 and 46 with placebo (PBS), 30μg RSV F, or 30μg RSV F+400μg aluminum phosphate.
Background: Respiratory syncytial virus (RSV) is a leading cause of infant morbidity and mortality. A recombinant RSV fusion protein nanoparticle vaccine (RSV F vaccine) candidate for maternal immunization was tested for safety and immunogenicity in women of childbearing age.
Methods: Three hundred thirty women (18-35 years) were randomized to receive 1 or 2 doses of RSV F vaccine (60 or 90 µg) with or without aluminum phosphate adjuvant, or placebo at days 0 and 28.
Clinical trials have shown that AS03-adjuvanted H5N1 and A(H1N1)pdm09 vaccines are highly immunogenic, although with an increased reactogenicity profile relative to non-adjuvanted vaccines in terms of the incidence of common injection site and systemic adverse events (AEs). We evaluated pooled safety data from 22,521 adults who had received an AS03-adjuvanted H5N1 or A(H1N1)pdm09 influenza or control vaccine with the purpose to identify medically-attended AEs (MAEs), including subsets of serious AEs (SAEs), potentially immune-mediated diseases (pIMDs), and AEs of special interest (AESI), and to explore a potential association of these AEs with the administration of an AS03-adjuvanted influenza vaccine. For participants who had received an AS03-adjuvanted vaccine, the relative risks (RRs) for experiencing a MAE or a SAE compared to control group (participants who had received a non-adjuvanted vaccine or saline placebo) were 1.
View Article and Find Full Text PDFPost-infectious immunity to respiratory syncytial virus (RSV) infection results in limited protection as evidenced by the high rate of infant hospitalization in the face of high titer, maternally derived RSV-specific antibodies. By contrast, RSV fusion (F) glycoprotein antigenic site II humanized monoclonal antibodies, palivizumab and motavizumab, have been shown to reduce RSV-related hospitalization in infants. Immunogenicity and efficacy studies were conducted in cotton rats comparing a recombinant RSV F nanoparticle vaccine with palivizumab and controlled with live RSV virus intranasal immunization and, formalin inactivated RSV vaccine.
View Article and Find Full Text PDFThe recent emergence of severe human illness caused by avian-origin influenza A(H7N9) viruses in China has precipitated a global effort to rapidly develop and test vaccine candidates. To date, non-A(H7N9) H7 subtype influenza vaccine candidates have been poorly immunogenic and difficulties in production of A(H7N9) virus seed strains have been encountered. A candidate recombinant A(H7N9) vaccine consisting of full length, unmodified hemagglutinin (HA) and neuraminidase (NA) from the A/Anhui/1/2013 and the matrix 1 (M1) protein from the A/Indonesia/05/2005 (H5N1) were cloned into a baculovirus vector.
View Article and Find Full Text PDFBackground: Group A streptococcus (GAS) causes illness ranging from uncomplicated pharyngitis to life-threatening necrotizing fasciitis, toxic shock, and rheumatic fever. Attempts to develop an M protein-based vaccine have been hindered by the fact that some M proteins elicit both protective antibodies and antibodies that cross-react with human tissues. New molecular techniques have allowed the previous obstacles to be largely overcome.
View Article and Find Full Text PDF