Publications by authors named "Louis Caillard"

Single charge electronics offer a way for disruptive technology in nanoelectronics. Coulomb blockade is a realistic way for controlling the electric current through a device with the accuracy of one electron. In such devices the current exhibits a step-like increase upon bias which reflects the discrete nature of the fundamental charge.

View Article and Find Full Text PDF

Electrostatic interactions at the nanoscale can lead to novel properties and functionalities that bulk materials and devices do not have. Here we used Kelvin probe force microscopy (KPFM) to study the work function (WF) of gold nanoparticles (NPs) deposited on a Si wafer covered by a monolayer of alkyl chains, which provide a tunnel junction. We find that the WF of Au NPs is size-dependent and deviates strongly from that of the bulk Au.

View Article and Find Full Text PDF

We provide a unified spectroscopic evidence of efficient energy transfer (ET) from optically excited colloidal nanocrystal quantum dots (NQDs) into Si substrates in a broad range of wavelengths: from visible (545 nm) to near-infrared (800 nm). Chemical grafting of nanocrystals on hydrogenated Si surfaces is achieved via amine-modified carboxy-alkyl chain linkers, thus ensuring complete surface passivation and accurate NQD positioning. Time-resolved photoluminescence (PL) has been measured for a set of CdSe/ZnS and CdSeTe/ZnS NQDs of various sizes and compositions grafted on Si and SiO2 substrates.

View Article and Find Full Text PDF

Two different organic monolayers were prepared on silicon Si(111) and modified for attaching gold nanoparticles. The molecules are covalently bound to silicon and form very ordered monolayers sometimes improperly called self-assembled monolayers (SAM). They are designed to be electrically insulating and to have very few electrical interface states.

View Article and Find Full Text PDF