Publications by authors named "Louis Bellmann"

Background: Interpretability and intuitive visualization facilitate medical knowledge generation through big data. In addition, robustness to high-dimensional and missing data is a requirement for statistical approaches in the medical domain. A method tailored to the needs of physicians must meet all the abovementioned criteria.

View Article and Find Full Text PDF

Fragment-based drug design is an established routine approach in both experimental and computational spheres. Growing fragment hits into viable ligands has increasingly shifted into the spotlight. FastGrow is an application based on a shape search algorithm that addresses this challenge at high speeds of a few milliseconds per fragment.

View Article and Find Full Text PDF

The distributions of physicochemical property values, like the octanol-water partition coefficient, are routinely calculated to describe and compare virtual chemical libraries. Traditionally, these distributions are derived by processing each member of a library individually and summarizing all values in a distribution. This process becomes impractical when operating on chemical spaces which surpass billions of compounds in size.

View Article and Find Full Text PDF

The set of chemical compounds shared by two or more chemical libraries is assessed routinely as means of comparing these libraries for various applications. Traditionally this is achieved by comparing the members of the chemical libraries individually for identity. This approach becomes impractical when operating on chemical libraries exceeding billions or even trillions of compounds in size.

View Article and Find Full Text PDF

In similarity-driven virtual screening, molecular fingerprints are widely used to assess the similarity of all compounds contained in a chemical library to a query compound of interest. This similarity analysis is traditionally done for each member of the library individually. When encoding chemical spaces that surpass billions of compounds in size, it becomes impractical to enumerate all their products, let alone assess their similarity, deeming this approach impossible without investing a substantial amount of resources.

View Article and Find Full Text PDF

Molecular fingerprints are an efficient and widely used method for similarity-driven virtual screening. Most fingerprint methods can be distinguished by the class of structural features considered. The Connected Subgraph Fingerprint (CSFP) overcomes this limitation and regards all structural features of a compound.

View Article and Find Full Text PDF