Publications by authors named "Louie Lamorte"

A high-throughput screen based on a viral replication assay was used to identify inhibitors of the human cytomegalovirus. Using this approach, hit compound 1 was identified as a 4 μM inhibitor of HCMV that was specific and selective over other herpes viruses. Time of addition studies indicated compound 1 exerted its antiviral effect early in the viral life cycle.

View Article and Find Full Text PDF

BI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3'-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling.

View Article and Find Full Text PDF

This report describes the development and optimization of a quantitative real-time PCR assay for evaluating human cytomegalovirus (CMV) replication in vitro and susceptibility to antiviral drugs. This assay measures the level of intracellular CMV DNA in both 96- and 384-well microplate formats. Normalization of CMV levels using mitochondrial DNA enhanced the robustness of the assay and minimized variability.

View Article and Find Full Text PDF

Infection with human cytomegalovirus (CMV) during pregnancy is the most common cause of congenital disorders, and can lead to severe life-long disabilities with associated high cost of care. Since there is no vaccine or effective treatment, current efforts are focused on identifying potent neutralizing antibodies. A panel of CMV monoclonal antibodies identified from patent applications, was synthesized and expressed in order to reproduce data from the literature showing that anti-glycoprotein B antibodies neutralized virus entry into all cell types and that anti-pentameric complex antibodies are highly potent in preventing virus entry into epithelial cells.

View Article and Find Full Text PDF

The identification of novel antiretroviral agents is required to provide alternative treatment options for HIV-1-infected patients. The screening of a phenotypic cell-based viral replication assay led to the identification of a novel class of 4,5-dihydro-1H-pyrrolo[3,4-c]pyrazol-6-one (pyrrolopyrazolone) HIV-1 inhibitors, exemplified by two compounds: BI-1 and BI-2. These compounds inhibited early postentry stages of viral replication at a step(s) following reverse transcription but prior to 2 long terminal repeat (2-LTR) circle formation, suggesting that they may block nuclear targeting of the preintegration complex.

View Article and Find Full Text PDF

Recently, a new class of HIV reverse transcriptase (HIV-RT) inhibitors has been reported. The novel mechanism of inhibition by this class involves competitive binding to the active site of the RT enzyme and has been termed Nucleotide-Competing Reverse Transcriptase Inhibitors (NcRTIs). In this publication we describe the optimization of a novel benzofurano[3,2-d]pyrimidin-2-one series of NcRTIs.

View Article and Find Full Text PDF

A HTS screen led to the identification of a benzofurano[3,2-d]pyrimidin-2-one core structure which upon further optimization resulted in 1 as a potent HIV-1 nucleotide competing reverse transcriptase inhibitor (NcRTI). Investigation of the SAR at N-1 allowed significant improvements in potency and when combined with the incorporation of heterocycles at C-8 resulted in potent analogues not requiring a basic amine to achieve antiviral activity. Additional modifications at N-1 resulted in 33 which demonstrated excellent antiviral potency and improved physicochemical properties.

View Article and Find Full Text PDF

Screening of our sample collection led to the identification of a set of benzofurano[3,2-d]pyrimidine-2-one hits acting as nucleotide-competing HIV-1 reverse transcriptase inhibitiors (NcRTI). Significant improvement in antiviral potency was achieved when substituents were introduced at positions N1, C4, C7 and C8 on the benzofuranopyrimidone scaffold. The series was optimized from low micromolar enzymatic activity against HIV-1 RT and no antiviral activity to low nanomolar antiviral potency.

View Article and Find Full Text PDF

Background: Activation of the Met receptor tyrosine kinase through its ligand, hepatocyte growth factor (HGF), promotes an epithelial-mesenchymal transition and cell dispersal. However, little is known about the HGF-dependent signals that regulate these events. HGF stimulation of epithelial cell colonies leads to the enhanced recruitment of the CrkII and CrkL adapter proteins to Met-dependent signaling complexes.

View Article and Find Full Text PDF

We have previously demonstrated that the CrkII and CrkL adapter proteins are required for the spreading of epithelial colonies and the breakdown of adherens junctions in response to hepatocyte growth factor. When overexpressed, CrkII and CrkL promote lamellipodia formation, cell spreading, and the loss of epithelial adherens junctions in the absence of hepatocyte growth factor. The exact mechanism by which Crk proteins elicit these changes is unclear.

View Article and Find Full Text PDF

Activation of the Met receptor tyrosine kinase through its ligand, hepatocyte growth factor, stimulates cell spreading, cell dispersal, and the inherent morphogenic program of various epithelial cell lines. Although both hepatocyte growth factor and epidermal growth factor (EGF) can activate downstream signaling pathways in Madin-Darby canine kidney epithelial cells, EGF fails to promote the breakdown of cell-cell junctional complexes and initiate an invasive morphogenic program. We have undertaken a strategy to identify signals that synergize with EGF in this process.

View Article and Find Full Text PDF

Activation of the Met receptor tyrosine kinase through its ligand, hepatocyte growth factor (HGF), promotes an epithelial-mesenchymal transition and cell dispersal. However, little is known about the HGF-dependent signals that regulate these events. HGF stimulation of epithelial cell colonies leads to the enhanced recruitment of the CrkII and CrkL adapter proteins to Met-dependent signaling complexes.

View Article and Find Full Text PDF