Publications by authors named "Lougovski P"

Accurate control of two-level systems is a longstanding problem in quantum mechanics. One such quantum system is the frequency-bin qubit: a single photon existing in superposition of two discrete frequency modes. In this Letter, we demonstrate fully arbitrary control of frequency-bin qubits in a quantum frequency processor for the first time.

View Article and Find Full Text PDF
Article Synopsis
  • Photonics enables high-speed long-distance communication, but routing photonic data without converting it to electrical signals is still a challenge.
  • We present a new method that uses phase modulators and pulse shapers to dynamically change carrier frequencies for dense wavelength-division-multiplexed data.
  • This all-optical frequency processor allows for cyclic channel hopping and broadcasting to multiple users, improving routing efficiency and paving the way for low-latency all-optical networks.
View Article and Find Full Text PDF

We study the problem of determining the photon number statistics of an unknown quantum state using conjugate optical homodyne detection. We quantify the information gain in a single-shot measurement and show that the photon number statistics can be recovered in repeated measurements on an ensemble of identical input states without scanning the phase of the input state or randomizing the phase of the local oscillator used in homodyne detection. We demonstrate how the expectation maximization algorithm and Bayesian inference can be utilized to facilitate the reconstruction and illustrate our approach by conducting experiments to study the photon number distributions of a weak coherent state and a thermal state source.

View Article and Find Full Text PDF

We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent.

View Article and Find Full Text PDF

Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation.

View Article and Find Full Text PDF

We report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.99998±0.

View Article and Find Full Text PDF

We present and demonstrate a novel protocol for distributing secret keys between two and only two parties based on N-party single-qubit Quantum Secret Sharing (QSS). We demonstrate our new protocol with N = 3 parties using phase-encoded photons. We show that any two out of N parties can build a secret key based on partial information from each other and with collaboration from the remaining N - 2 parties.

View Article and Find Full Text PDF

Purpose: To establish an inverse planning framework with adjustable voxel penalty for more conformal IMRT dose distribution as well as improved interactive controllability over the regional dose distribution of the resultant plan.

Materials And Method: In the proposed coarse-to-fine planning scheme, a conventional inverse planning with organ specific parameters is first performed. The voxel penalty scheme is then "switched on" by allowing the prescription dose to change on an individual voxel scale according to the deviation of the actual voxel dose from the ideally desired dose.

View Article and Find Full Text PDF

Access to genuine multipartite entanglement of quantum states enables advances in quantum information science and also contributes to the understanding of strongly correlated quantum systems. We report the detection and characterization of heralded entanglement in a multipartite quantum state composed of four spatially distinct optical modes that share one photon, a so-called W state. By randomizing the relative phase between bipartite components of the W state, we observed the transitions from four- to three- to two-mode entanglement with increasing phase noise.

View Article and Find Full Text PDF

We show that it is possible to perform a continuous measurement that continually projects a nanoresonator into its energy eigenstates by employing a linear coupling with a two-state system. This technique makes it possible to perform a measurement that exposes the quantum nature of the resonator by coupling it to a Cooper-pair box and a superconducting transmission line resonator.

View Article and Find Full Text PDF

We present an operational definition of the Wigner function. Our method relies on the Fresnel transform of measured Rabi oscillations and applies to motional states of trapped atoms as well as to field states in cavities. We illustrate this technique using data from recent experiments in ion traps [Phys.

View Article and Find Full Text PDF