Doping is a widely employed technique to enhance the functionality of lithium-ion battery materials, tailoring their performance for specific applications. In our study, we employed in situ Raman and in situ X-ray diffraction (XRD) spectroscopic techniques to examine the structural alterations and electrochemical behavior of phosphorus-doped titanium dioxide (TiO) nanoparticles. This investigation revealed several notable changes: an increase in structural defects, enhanced ionic and electronic conductivity, and a reduction in crystallite size.
View Article and Find Full Text PDFLithium-ion batteries (LIBs) have gained considerable attention from the scientific community due to their outstanding properties, such as high energy density, low self-discharge, and environmental sustainability. Among the prominent candidates for anode materials in next-generation LIBs are the spinel ferrites, represented by the MFeO series, which offer exceptional theoretical capacities, excellent reversibility, cost-effectiveness, and eco-friendliness. In the scope of this study, NiMgFeMnO nanoparticles were synthesized using a sol-gel synthesis method and subsequently coated with a carbon layer to further enhance their electrochemical performance.
View Article and Find Full Text PDFAmorphous Si thin films with different thicknesses were deposited on synthetic graphite electrodes by using a simple and scalable one-step physical vapor deposition (PVD) method. The specific capacities and rate capabilities of the produced electrodes were investigated. X-ray diffraction, scanning electron microscopy, Raman spectroscopy, profilometry, cyclic voltammetry, galvanostatic techniques, and in situ Raman spectroscopy were used to investigate their physicochemical and electrochemical properties.
View Article and Find Full Text PDF