Publications by authors named "Lou-Fe Feiner"

Article Synopsis
  • Scientists have found a way to grow tiny structures called InP nanowires really well, with a success rate of 97%!
  • They discovered that by filling a tiny drop with a metal called indium before starting to grow the nanowires, they get the best results.
  • They can also change the direction the nanowires grow by adjusting the amount of indium in that drop, and this change is influenced by some science stuff related to energy at the surface of the liquid.
View Article and Find Full Text PDF

We present an approach to quantitatively determine the magnitudes and the variation of the chemical potential in the droplet (Δμ), the solid-liquid (γ(SL)) and the liquid-vapor (γ(LV)) interface energies upon variation of the group III partial pressure during vapor-liquid-solid-growth of nanowires. For this study, we use GaP twinning superlattice nanowires. We show that γ(LV) is the quantity that is most sensitive to the Ga partial pressure (p(Ga)), its dependence on p(Ga) being three to four times as strong as that of γ(SL) or Δμ, and that as a consequence the surface energies are as important in determining the twin density as the chemical potential.

View Article and Find Full Text PDF

Formation of random as well as periodic planar defects can occur during vapor-liquid-solid growth of nanowires with the zinc-blende crystal structure. Here we investigate the formation of pairs of twin planes in GaP nanowires. In such pairs, the first twin plane is formed at a random position, rapidly followed by the formation of a second twin plane of which the position is directly related to that of the first one.

View Article and Find Full Text PDF

Semiconducting nanowires offer the possibility of nearly unlimited complex bottom-up design, which allows for new device concepts. However, essential parameters that determine the electronic quality of the wires, and which have not been controlled yet for the III-V compound semiconductors, are the wire crystal structure and the stacking fault density. In addition, a significant feature would be to have a constant spacing between rotational twins in the wires such that a twinning superlattice is formed, as this is predicted to induce a direct bandgap in normally indirect bandgap semiconductors, such as silicon and gallium phosphide.

View Article and Find Full Text PDF