Epigenetic programs play a key role in regulating the development and function of immune cells. However, conventional methods for profiling epigenetic mechanisms, such as the post-translational modifications to histones, present several technical challenges that prevent a complete understanding of gene regulation. Here, we provide a detailed protocol of the Cleavage Under Targets and Tagmentation (CUT&Tag) chromatin profiling technique for identifying histone modifications in human and mouse lymphocytes.
View Article and Find Full Text PDFCD8 cytotoxic T cells are a potent line of defense against invading pathogens. To aid in curtailing aberrant immune responses, the activation status of CD8 T cells is highly regulated. One mechanism in which CD8 T cell responses are dampened is via signaling through the immune-inhibitory receptor Programmed Cell Death Protein-1, encoded by Pdcd1.
View Article and Find Full Text PDFB cell differentiation is associated with substantial transcriptional, metabolic, and epigenetic remodeling, including redistribution of histone 3 lysine 27 trimethylation (H3K27me3), which is associated with a repressive chromatin state and gene silencing. Although the role of the methyltransferase EZH2 (Enhancer of zeste homolog 2) in B cell fate decisions has been well established, it is not known whether H3K27me3 demethylation is equally important. In this study, we showed that simultaneous genetic deletion of the two H3K27 demethylases UTX and JMJD3 (double-knockout [ ] [dKO]) led to a significant increase in plasma cell (PC) formation after stimulation with the T cell-independent Ags LPS and NP-Ficoll.
View Article and Find Full Text PDF