The epithelial cell adhesion molecule (EpCAM) is a membrane glycoprotein that is highly expressed on most carcinomas and therefore of potential use as a diagnostic and prognostic marker for a variety of carcinomas. Interestingly, EpCAM is explored as target in antibody-based therapies. Recently, EpCAM has been identified as an additional marker of cancer-initiating cells.
View Article and Find Full Text PDFEmbryonic development is one of the most complex biological phenomena that involves the appropriate expression and synchronized interactions of a plethora of proteins, including cell adhesion molecules (CAMs). Many members of the diverse family of CAMs have been shown to be critically involved in the correct execution of embryonic development. The Epithelial Cell Adhesion Molecule (EpCAM) is an atypical cell adhesion molecule originally identified as a marker for carcinoma.
View Article and Find Full Text PDFPreviously, we have shown that epidermal growth factor receptor (EGFR)-selective delivery of soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL), by genetic fusion to antibody fragment scFv425, enhances the tumor-selective pro-apoptotic activity of sTRAIL. Insight into the respective contribution of the agonistic receptors TRAIL-R1 and TRAIL-R2 to TRAIL-induced apoptosis may provide a rational approach to further optimize TRAIL-based therapy. Recently, this issue has been investigated using sTRAIL mutants designed to selectively bind to either receptor.
View Article and Find Full Text PDFThe epithelial cell adhesion molecule (EpCAM) is expressed at high levels on the surface of most carcinoma cells. SiRNA silencing of EpCAM expression leads to reduced metastatic potential of tumor cells demonstrating its importance in oncogenesis and tumor progression. However, siRNA therapy requires either sequential delivery or integration into the host cell genome.
View Article and Find Full Text PDFCationic liposomal compounds are widely used to introduce DNA and siRNA into viable cells, but none of these compounds are also capable of introducing proteins. Here we describe the use of a cationic amphiphilic lipid SAINT-2:DOPE for the efficient delivery of proteins into cells (profection). Labeling studies demonstrated equal delivery efficiency for protein as for DNA and siRNA.
View Article and Find Full Text PDFThe human pancarcinoma-associated epithelial cell adhesion molecule (EpCAM) (EGP-2, CO17-1A) is a well-known target for carcinoma-directed immunotherapy. Mouse-derived mAbs directed to EpCAM have been used to treat colon carcinoma patients showing well-tolerable toxic side effects but limited antitumor effects. Humanized or fully human anti-EpCAM mAbs may induce stronger antitumor activity, but proved to produce severe pancreatitis upon use in patients.
View Article and Find Full Text PDFAb binding to CD20 has been shown to induce apoptosis in B cells. In this study, we demonstrate that rituximab sensitizes lymphoma B cells to Fas-induced apoptosis in a caspase-8-dependent manner. To elucidate the mechanism by which Rituximab affects Fas-mediated cell death, we investigated rituximab-induced signaling and apoptosis pathways.
View Article and Find Full Text PDFTargeting viral proteins early during infection may limit exacerbation of human cytomegalovirus infection. The viral chemokine-receptor homologue US28 interferes with leukocyte trafficking and, possibly, viral replication. Because US28 molecules are abundant on the surface of infected cells, this homologue is a potential target for antiviral therapy.
View Article and Find Full Text PDFBackground: Human mitochondrial DNA (mtDNA) polymorphisms can be used to detect allogeneic transfused platelets. To increase the number of informative polymorphisms we investigated three hypervariable regions (HVR1, HVR2, and HVR3) within the displacement loop (D-loop) region of the mtDNA.
Study Design And Methods: mtDNA was obtained from 119 unrelated blood donors.
The activation of the major immediate-early promoter (MIEP) is a key event in the cytomegalovirus replication cycle and is dependent on cellular transcription factors which are partially activated by viral proteins. Expression of the viral chemokine receptor homolog US28 results in constitutive activation of pro-inflammatory transcription factors that may be involved in the activation of the major immediate-early promoter/enhancer. Using reporter gene assays in human embryonic kidney cells, we found that US28 signaling was responsible for increased major immediate-early promoter/enhancer activity which was independent of beta-chemokine binding.
View Article and Find Full Text PDFAgonistic anti-Fas antibodies and multimeric recombinant Fas ligand (FasL) preparations show high tumoricidal activity against leukemic cells, but are unsuitable for clinical application due to unacceptable systemic toxicity. Consequently, new antileukemia strategies based on Fas activation have to meet the criterion of strictly localized action at the tumor-cell surface. Recent insight into the FasL/Fas system has revealed that soluble homotrimeric FasL (sFasL) is in fact nontoxic to normal cells, but also lacks tumoricidal activity.
View Article and Find Full Text PDFCurrent treatment of human T-cell leukemia and lymphoma is predominantly limited to conventional cytotoxic therapy and is associated with limited therapeutic response and significant morbidity. Therefore, more potent and leukemia-specific therapies with favorable toxicity profiles are urgently needed. Here, we report on the construction of a novel therapeutic fusion protein, scFvCD7:sTRAIL, designed to induce target antigen-restricted apoptosis in human T-cell tumors.
View Article and Find Full Text PDFThe foreign body response is characterized by enhanced recruitment of inflammatory cells. As the directional movement of cells is controlled by chemokines, disruption of the chemokine network would be an attractive approach to improve biocompatibility of an implanted material. The sequestration of chemokines by cell surface-expressed glycosaminoglycans (GAGs) is vital for in vivo chemokine activity.
View Article and Find Full Text PDFThe chemokine network is an extensive system that regulates many immune functions such as leukocyte locomotion, T cell differentiation, angiogenesis and mast cell degranulation. Tight control of chemokines is vital for proper immune function. Not surprisingly, viruses have found ways to subvert or exploit the immune system in order to persist in co-existence with their hosts.
View Article and Find Full Text PDFJ Biol Chem
March 2005
Epidermal growth factor receptor (EGFR) signaling inhibition by monoclonal antibodies and EGFR-specific tyrosine kinase inhibitors has shown clinical efficacy in cancer by restoring susceptibility of tumor cells to therapeutic apoptosis induction. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent with tumor-selective apoptotic activity. Here we present a novel approach that combines EGFR-signaling inhibition with target cell-restricted apoptosis induction using a TRAIL fusion protein with engineered specificity for EGFR.
View Article and Find Full Text PDFBackground: Many recipients of lung transplants from brain-dead donors develop bronchiolitis obliterans, a manifestation of chronic rejection. It has been shown that brain death increases inflammatory mediators and accelerates acute rejection in kidney, liver, and heart transplants. In this study, the authors investigated the hypothesis that brain death increases inflammatory mediators in the donor lung and subsequently aggravates chronic rejection of the lungs after transplantation in rats.
View Article and Find Full Text PDFIn this study, we investigated the role of the naturally occurring B cell-mediated T cell costimulation in the antitumor efficacy of the bispecific Ab BIS20x3. BIS20x3 has a dual specificity for both CD20 and CD3 and has previously been shown to effectively direct the lytic potential of cytolytic T cells toward malignant, CD20(+) B cells. BIS20x3 instigated T cell-B cell interaction caused a dose-dependent activation of T cells that was 30 times stronger when compared with T cell activation induced by monovalent anti-CD3 Abs.
View Article and Find Full Text PDFTo redirect the lytic activity of cytotoxic T lymphocytes (CTL) toward tumor vascular endothelial cells, we prepared bifunctional proteins with specificity for both alphavbeta3 and CD3. Monocyclic RGD peptides (cRGDfK) were covalently coupled to an anti-CD3 monoclonal antibody at different peptide:protein ratios. The resulting RGDpep-anti-CD3 conjugates bound specifically to alphavbeta3-expressing endothelial cells.
View Article and Find Full Text PDFDacron-containing heart valve repair devices trigger chronic inflammation characterized by the presence of activated macrophages, foreign body giant cells, and capsule formation. Upon blood contact, proinflammatory proteins adsorb to the material and provide a substrate for monocyte binding and differentiation. Various heparin-coated polymers have been shown to reduce adsorption of proinflammatory proteins in vitro and in vivo.
View Article and Find Full Text PDFBackground: Immune injury to airway epithelium is suggested to play a central role in the pathogenesis of obliterative bronchiolitis (OB) after clinical lung transplantation. In several studies, a rejection model of murine trachea transplants is used, resulting in obliterative airway disease (OAD) with similarities to human OB. To focus on the role of an immune response specifically against airway epithelium, we transplanted tracheas from transgenic mice expressing human epithelial glycoprotein (hEGP) on epithelial cells.
View Article and Find Full Text PDFThe aim of our study was to detect micrometastatic breast cancer by epithelial glycoprotein-2 (EGP-2) and cytokeratin 19 (CK19), using immunostaining and real time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Fifty-eight breast cancer patients, 52 primary tumors, 75 sentinel nodes (SN) and 149 peripheral blood (PB) samples (from before, during and 4 days after operation) were examined. Immunostaining was performed with antibodies directed against EGP-2 and CK19.
View Article and Find Full Text PDFAim: The aim of the current retrospective study was to assess the influence of polymorphic drug metabolism as assessed by genotyping, on the on the utilisation of psychotropic drugs in hospitalised psychiatric patients. The utilisation of psychotropic drugs was assessed using pharmacy records with emphasis on the number of prescriptions and prescriptions for possible side effects.
Methods: CYP2D6 genotype was assessed in 241 psychiatric patients by investigation for the five most common allelic variants ( CYP2D6*3, *4, *6, *7, *8) and the presence of gene duplication using allele-specific polymerase chain reaction.
Although biomaterials have been used in the clinical setting for a long time, little is known of the molecular mechanisms underlying the foreign-body reaction (FBR). A good understanding of these mechanisms is requisite for the controlled regulation of the FBR needed to prevent adverse tissue reactions and thus to improve the function of the biomaterial. Macrophages are essential in the inflammatory reaction in, as well as around, the implants, and they also are believed to initiate most of the adverse responses.
View Article and Find Full Text PDFIn this study, we describe an ordered formation of long- and very long-chain ceramide species in relation to the progression of B-cell receptor (BcR) triggering induced apoptosis. An early and caspase-independent increase in long-chain ceramide species, in which C(16)- ceramide predominated, was observed 6 h after BcR triggering. In contrast, very long-chain ceramide species were generated later, 12-24 h after BcR triggering.
View Article and Find Full Text PDF