Whole blood is a powerful resuscitation strategy for trauma patients but has a shorter shelf life than other blood products. The red blood cell storage lesion in whole blood has not previously been investigated beyond the standard storage period. In the present study, we hypothesized that erythrocytes in stored whole blood exhibit similar aspects of the red blood cell storage lesion and that transfusion of extended storage whole blood would not result in a more severe inflammatory response after hemorrhage in a murine model.
View Article and Find Full Text PDFBackground: Recent military and civilian experience suggests that fresh whole blood may be the preferred for treatment of hemorrhagic shock, but its use is limited by its 21-day shelf life. The red blood cell storage lesion and coagulation status of packed red blood cells (pRBCs) salvaged from expired whole blood are unknown. We hypothesized that pRBCs can be salvaged from previously stored whole blood.
View Article and Find Full Text PDFTraumatic brain injury (TBI) can lead to the development of chronic traumatic encephalopathy as a result of neuronal phosphorylated tau (p-tau) protein aggregation and neuroinflammation. Acid sphingomyelinase (Asm) may also contribute to post-TBI neurodegenerative disorders. We hypothesized that Asm inhibition would ameliorate p-tau aggregation, neuroinflammation, and behavioral changes after TBI in a murine model.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2020
Acute lung injury is a major complication of hemorrhagic shock and the required resuscitation with large volumes of crystalloid fluids and blood products. We previously identified a role of macrophage-derived chemokine (CCL22/MDC) pulmonary inflammation following hemorrhage and resuscitation. However, further details regarding the induction of CCL22/MDC and its precise role in pulmonary inflammation after trauma remain unknown.
View Article and Find Full Text PDFIntroduction: Trauma patients may become hypoxic or iatrogenically hyperoxic in the early post-injury period. While both extremes of oxygenation may be harmful following injury, the mechanism has yet to be elucidated. We hypothesized that hypoxia or hyperoxia would induce changes in coagulation, creating a secondary insult exacerbating the primary injury.
View Article and Find Full Text PDFBackground: Several serum biomarkers have been studied to diagnose incidence and severity of traumatic brain injury (TBI), but a reliable biomarker in TBI has yet to be identified. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) has been proposed as a biomarker in clinical and preclinical studies, largely in the setting of isolated TBI or concussion. The aim of this study was to evaluate the performance of UCH-L1 as a serum biomarker in the setting of polytrauma and TBI.
View Article and Find Full Text PDFIntroduction: While damage control surgery and resuscitation techniques have revolutionized the care of injured service members who sustain severe traumatic hemorrhage, the physiologic and inflammatory consequences of hemostatic resuscitation and staged abdominal surgery in the face of early aeromedical evacuation (AE) have not been investigated. We hypothesized that post-injury AE with an open abdomen would have significant physiologic and inflammatory consequences compared to AE with a closed abdomen.
Materials And Methods: Evaluation of resuscitation and staged abdominal closure was performed using a murine model of hemorrhagic shock with laparotomy.
Background: Traumatic brain injury (TBI) can result in an acute coagulopathy including platelet dysfunction that can contribute to ongoing intracranial hemorrhage. Previous studies have shown adenosine diphosphate (ADP)-induced platelet aggregation to be reduced after TBI. In addition, circulating microvesicles (MVs) are increased following TBI and have been shown to play a role in post-TBI coagulopathy and platelet function.
View Article and Find Full Text PDFBackground: Resuscitation strategies for combined traumatic brain injury (TBI) with haemorrhage in austere environments are not fully established. Our aim was to establish the effects of various saline concentrations in a murine model of combined TBI and haemorrhage, and identify an effective resuscitative strategy for the far-forward environment.
Methods: Male C57BL/6 mice underwent closed head injury and subjected to controlled haemorrhage to a systolic blood pressure of 25 mmHg via femoral artery cannulation for 60 min.
Am J Physiol Regul Integr Comp Physiol
August 2018
The phosphodiesterase 4 (PDE4)-cAMP pathway plays a predominant role in mediating skeletal muscle proteolysis in burn injury. The present investigations to determine the PDE4 isoform(s) involved in this action revealed that burn injury increased the expression of rat skeletal muscle PDE4B mRNA by sixfold but had little or no effect on expression of other PDE4 isoforms. These observations led us to study the effects of burn in PDE4B knockout (KO) rats.
View Article and Find Full Text PDFTraumatic brain injury (TBI) results in systemic changes in coagulation and inflammation that contribute to post-traumatic morbidity and mortality. The potential interaction of platelets and pro-inflammatory cytokines in the modulation of coagulation, microthrombosis, and venous thromboembolic events after moderate TBI has not been determined. Using a murine model, we hypothesized that the degree of platelet-induced coagulation varies depending on the platelet aggregation agonist platelet-induced coagulation changes in a time-dependent manner following TBI, and changes in platelet-induced coagulation are mirrored by changes in the levels of circulating pro-inflammatory cytokines.
View Article and Find Full Text PDFBackground: Posttraumatic coagulopathy and inflammation can exacerbate secondary cerebral damage after traumatic brain injury (TBI). Tranexamic acid (TXA) has been shown clinically to reduce mortality in hemorrhaging and head-injured trauma patients and has the potential to mitigate secondary brain injury with its reported antifibrinolytic and antiinflammatory properties. We hypothesized that TXA would improve posttraumatic coagulation and inflammation in a murine model of TBI alone and in a combined injury model of TBI and hemorrhage (TBI/H).
View Article and Find Full Text PDFAn acute burn induced coagulopathy develops after scald injury, which evolves into a subacute, hypercoagulable state. Microparticles, specifically platelet-derived MPs (PMPs), have been suggested as possible contributors. We first developed a model of burn-induced coagulopathy and then sought to investigate the role of platelets and PMPs in coagulation after burn.
View Article and Find Full Text PDFBackground: The pathophysiology that drives the subacute hypercoagulable state commonly seen after traumatic brain injury (TBI) is not well understood. Alterations caused by TBI in platelet and microparticle (MP) numbers and function have been suggested as possible causes; however, the contributions of platelets and MPs are currently unknown.
Materials And Methods: A weight-drop technique of TBI using a murine model of moderate head injury was used.
Resuscitation of patients after hemorrhage often results in pulmonary inflammation and places them at risk for the development of acute respiratory distress syndrome. Our previous data indicate that macrophage-derived chemokine (MDC/CCL22) is elevated after resuscitation, but its direct role in this inflammatory response is unknown. Macrophage-derived chemokine signaling through the C-C chemokine receptor type 4 (CCR4) is implicated in other pulmonary proinflammatory conditions, leading us to hypothesize that MDC may also play a role in the pathogenesis of lung inflammation following hemorrhage and resuscitation.
View Article and Find Full Text PDFCritical illness, including burn injury, results in elevated plasma lactate levels. Dysregulation of PI3K/Akt signaling has been shown to play a predominant role in the inactivation of skeletal muscle PDC and, hence, in hyperlactacidemia in rat models of sepsis and endotoxemia. This observation, and our previous finding that DAG can reverse burn-induced skeletal muscle proteolysis through the activation of PI3K/Akt pathway, led us to hypothesize that DAG may also attenuate hyperlactacidemia in burn injury.
View Article and Find Full Text PDFTreatment of rats after burn-injury with the cyclic AMP phosphodiesterase (PDE) inhibitor, torbafylline (also known as HWA 448) significantly reversed changes in rat skeletal muscle proteolysis, PDE4 activity, cAMP concentrations and mRNA expression of TNFα, IL-6, ubiquitin and E3 ligases. Torbafylline also attenuated muscle proteolysis during in vitro incubation, and this effect was blocked by the inhibitor Rp-cAMPS. Moreover, torbafylline significantly increased phospho-Akt levels, and normalized downregulated phospho-FOXO1 and phospho-4E-BP1 in muscle of burn rats.
View Article and Find Full Text PDFHemorrhagic shock is a primary injury amongst combat casualties. Aeromedical evacuation (AE) of casualties exposes patients to a hypobaric, hypoxic environment. The effect of this environment on the host response to hemorrhagic shock is unknown.
View Article and Find Full Text PDFBackground: Resuscitation with blood products instead of crystalloid in the treatment of hemorrhagic shock has been associated with improved outcomes in trauma patients requiring massive transfusions and transfusion of fresh products results in reduced morbidity and mortality compared with aged blood. Processes to eliminate harmful components of aged blood are under investigation. We hypothesized that washing blood would reduce levels of proinflammatory mediators in stored units, and resuscitation with washed units would attenuate the proinflammatory response in mice after hemorrhagic shock.
View Article and Find Full Text PDFAlthough ghrelin and GHRP-2 have been shown to inhibit skeletal muscle proteolysis in rats with burn injury, the effects of des-acyl ghrelin (DAG) have not been reported. In this paper, we demonstrate that continuous 24h administration of DAG attenuated burn-induced EDL muscle proteolysis, and normalized elevated TNFα mRNA. Combined treatment of cultured C2C12 myotubes with TNFα and IFN-γ (TNF+IFN) inhibited protein synthesis and increased protein breakdown; DAG abolished both effects.
View Article and Find Full Text PDFThermal injury results in hypermetabolism, loss of body weight, and skeletal muscle wasting in mice and rats. Our earlier studies have demonstrated that ghrelin injection stimulates food intake and growth hormone release and inhibits skeletal muscle proteolysis in rats with thermal injury. We sought to develop a lower molecular weight, stable and longer acting peptide to combat the catabolic responses caused by thermal injury.
View Article and Find Full Text PDFWe previously determined that ghrelin synthesis was downregulated after burn injury and that exogenous ghrelin retained its ability both to stimulate food intake and to restore plasma growth hormone levels in burned rats. These observations and the finding that anabolic hormones can attenuate skeletal muscle catabolism led us to investigate whether ghrelin could attenuate burn-induced skeletal muscle protein breakdown in rats. These studies were performed in young rats (50-60 g) 24 h after approximately 30% total body surface area burn injury.
View Article and Find Full Text PDFThe development of anorexia continues to be a serious treatment issue for cancer patients. Because the orexigenic peptide, ghrelin, is active through systemic routes and activates hypothalamic neuropeptide systems known to be refractory in anorectic tumor-bearing (TB) rats, we investigated whether it would prevent the development of cancer anorexia when infused continuously intravenously. The 24-h food intake was increased in nontumor-bearing (NTB) rats at a dose of 288 microg/day ghrelin.
View Article and Find Full Text PDF