The enantioselective α-functionalisation of glycine Schiff base aryl esters through isothiourea catalysis is successfully demonstrated for 1,6-additions to para-quinone methides (21 examples, up to 95:5 dr and 96:4 er) and 1,4-additions to methylene substituted dicarbonyl or disulfonyl Michael acceptors (17 examples, up to 98:2 er). This nucleophilic organocatalysis approach gives access to a range of α-functionalised α-amino acid derivatives and further transformations of the activated aryl ester group provide a straightforward entry to advanced amino acid-based esters, amides or thioesters.
View Article and Find Full Text PDFChiral Lewis base (LB) organocatalysis has emerged as a powerful covalent catalysis concept which allows for highly selective asymmetric C-C and C-heteroatom bond formations. Considering significant recent progress in the development of strategies to access α-heterofunctionalized carboxylic acid derivatives under chiral LB catalysis, we wish to summarize the most significant concepts and advances in this field within this mini review now.
View Article and Find Full Text PDFWe herein report a two-step protocol for the asymmetric synthesis of novel chiral benzofused ϵ-lactones starting from O-protected hydroxymethyl-para-quinone methides and activated aryl esters. By using chiral isothiourea Lewis base catalysts a broad variety of differently substituted products could be obtained in yields of around 50 % over both steps with high levels of enantioselectivities, albeit low diastereoselectivities only.
View Article and Find Full Text PDFThe enantioselective synthesis of α-chlorinated carboxylic acid esters with er up to 99:1 and yields up to 82% was achieved via a one-pot multistep protocol starting from α-diazoketones. This process proceeds via a photochemical Wolff rearrangement, trapping of the generated ketene with a chiral Lewis base catalyst, subsequent enantioselective α-chlorination, and a final nucleophilic displacement of the bound catalyst. The obtained products were successfully utilized for stereospecific nucleophilic displacement reactions with - and -nucleophiles.
View Article and Find Full Text PDFThe asymmetric α-chlorination of activated aryl acetic acid esters can be carried out with high levels of enantioselectivities utilizing commercially available isothiourea catalysts under base-free conditions. The reaction, which proceeds via the in situ formation of chiral C1 ammonium enolates, is best carried out under cryogenic conditions combined with a direct trapping of the activated α-chlorinated ester derivative to prevent epimerization, thus allowing for enantioselectivities of up to e.r.
View Article and Find Full Text PDFWe herein report an unprecedented strategy for the asymmetric α-chlorination of β-keto esters with hypervalent iodine-based Cl-transfer reagents using simple Cinchona alkaloid catalysts. Our investigations support an α-chlorination mechanism where the Cinchona species serves as a nucleophilic catalyst by reacting with the chlorinating agent to generate a chiral electrophilic Cl-transfer reagent in situ. Using at least 20 mol-% of the alkaloid catalyst allows for good yields and enantioselectivities for a variety of different β-keto esters under operationally simple conditions.
View Article and Find Full Text PDFDetailed investigations concerning the organocatalytic (asymmetric) α-azidation of prochiral β-ketoesters were carried out. It was shown that the racemic version of such a reaction can either be carried out under oxidative conditions using TMSN₃ as the azide-source with quaternary ammonium iodides as the catalysts, or by using hypervalent iodine-based electrophilic azide-transfer reagents with different organocatalysts. In addition, the latter strategy could also be carried out with modest enantioselectivities when using simple cinchona alkaloid catalysts, albeit with relatively low yields.
View Article and Find Full Text PDF