Mutations in the hepatocyte nuclear factor (HNF)1β gene () cause autosomal dominant tubulointerstitial kidney disease, a rare and heterogeneous disease characterized by renal cysts and/or malformation, maturity-onset diabetes of the young, hypomagnesemia, and hypokalemia. The electrolyte disturbances may develop in the distal part of the nephron, which is important for fine-tuning of Mg and Ca reabsorption. Therefore, we aimed to study the transcriptional network directed by HNF1β in the distal part of the nephron.
View Article and Find Full Text PDFIntroduction: Monogenic causes in over 300 kidney-associated genes account for approximately 12% of end stage kidney disease (ESKD) cases. Advances in sequencing and large customized panels enable the noninvasive diagnosis of monogenic kidney disease at relatively low cost, thereby allowing for more precise management for patients and their families. A major challenge is interpreting rare variants, many of which are classified as variants of unknown significance (VUS).
View Article and Find Full Text PDFHepatocyte nuclear factor 1β (HNF1β) is a transcription factor essential for the development and function of the kidney. Mutations in and deletions of HNF1β cause autosomal dominant tubule interstitial kidney disease (ADTKD) subtype HNF1β, which is characterized by renal cysts, diabetes, genital tract malformations, and neurodevelopmental disorders. Electrolyte disturbances including hypomagnesemia, hyperuricemia, and hypocalciuria are common in patients with ADTKD-HNF1β.
View Article and Find Full Text PDFHepatocyte nuclear factor 1β (HNF1β) is an essential transcription factor in development of the kidney, liver, and pancreas. HNF1β-mediated transcription of target genes is dependent on the cell type and the development stage. Nevertheless, the regulation of HNF1β function by enhancers and co-factors that allow this cell-specific transcription is largely unknown.
View Article and Find Full Text PDFAntiviral immunity in insects and plants is mediated by the RNA interference (RNAi) pathway in which viral long double-stranded RNA (dsRNA) is processed into small interfering RNAs (siRNAs) by Dicer enzymes. Although this pathway is evolutionarily conserved, its involvement in antiviral defense in mammals is the subject of debate. In vertebrates, recognition of viral RNA induces a sophisticated type I interferon (IFN)-based immune response, and it has been proposed that this response masks or inhibits antiviral RNAi.
View Article and Find Full Text PDF