Publications by authors named "Lotta Veistinen"

Loss-of-function mutations in and cause craniosynostosis and reduced osteogenesis, respectively. In this study, we show that ligand, the receptor and transcription factors are differentially expressed in embryonic mouse calvaria osteogenic condensations. We show that in both and embryonic mice, the normal gene expression architecture is lost and this results in disorganized calvarial bone development.

View Article and Find Full Text PDF

Greig cephalopolysyndactyly syndrome (GCPS) is an autosomal dominant disorder with polydactyly and syndactyly of the limbs and a broad spectrum of craniofacial abnormalities. Craniosynostosis of the metopic suture (interfrontal suture in mice) is an important but rare feature associated with GCPS. GCPS is caused by mutations in the transcription factor GLI3, which regulates Hedgehog signaling.

View Article and Find Full Text PDF

Mutations in the gene encoding the zinc finger transcription factor GLI3 (GLI-Kruppel family member 3) have been identified in patients with Grieg cephalopolysyndactyly syndrome in which premature fusion of calvarial suture (craniosynostosis) is an infrequent but important feature. Here, we show that Gli3 acts as a repressor in the developing murine calvaria and that Dlx5, Runx2 type II isoform (Runx2-II), and Bmp2 are expressed ectopically in the calvarial mesenchyme, which results in aberrant osteoblastic differentiation in Gli3-deficient mouse (Gli3(Xt-J/Xt-J)) and resulted in craniosynostosis. At the same time, enhanced activation of phospho-Smad1/5/8 (pSmad1/5/8), which is a downstream mediator of canonical Bmp signaling, was observed in Gli3(Xt-J/Xt-J) embryonic calvaria.

View Article and Find Full Text PDF

Holoprosencephaly (HPE) is a heterogeneous craniofacial and neural developmental anomaly characterized in its most severe form by the failure of the forebrain to divide. In humans, HPE is associated with disruption of Sonic hedgehog and Nodal signaling pathways, but the role of other signaling pathways has not yet been determined. In this study, we analyzed mice which, due to the lack of the Bmp antagonist Noggin, exhibit elevated Bmp signaling.

View Article and Find Full Text PDF

Craniosynostosis and supernumerary teeth most often occur as isolated developmental anomalies, but they are also separately manifested in several malformation syndromes. Here, we describe a human syndrome featuring craniosynostosis, maxillary hypoplasia, delayed tooth eruption, and supernumerary teeth. We performed homozygosity mapping in three unrelated consanguineous Pakistani families and localized the syndrome to a region in chromosome 9.

View Article and Find Full Text PDF

Gli3 is a zinc-finger transcription factor whose activity is dependent on the level of hedgehog (Hh) ligand. Hh signaling has key roles during endochondral ossification; however, its role in intramembranous ossification is still unclear. In this study, we show that Gli3 performs a dual role in regulating both osteoprogenitor proliferation and osteoblast differentiation during intramembranous ossification.

View Article and Find Full Text PDF

Fibroblast growth factor receptor 2 (Fgfr2) has two splice variants IIIb and IIIc, which are unique in function and localization. Signalling through Fgfr2IIIb controls epithelial-mesenchymal interactions, which regulate morphogenesis during the development of several organs including the palate and tooth. In this study, we confirm that molar tooth development in Fgfr2IIIb(-/-) mice is arrested early in development and that the molar teeth of Fgf10(-/-) mice develop through all the normal stages of morphogenesis.

View Article and Find Full Text PDF