As a comprehensive analysis of all metabolites in a biological system, metabolomics is being widely applied in various clinical/health areas for disease prediction, diagnosis, and prognosis. However, challenges remain in dealing with the metabolomic complexity, massive data, metabolite identification, intra- and inter-individual variation, and reproducibility, which largely limit its widespread implementation. This study provided a comprehensive workflow for clinical metabolomics, including sample collection and preparation, mass spectrometry (MS) data acquisition, and data processing and analysis.
View Article and Find Full Text PDFIn budding yeast Saccharomyces cerevisiae, the switch from aerobic fermentation to respiratory growth is separated by a period of growth arrest, known as the diauxic shift, accompanied by a significant metabolic rewiring, including the derepression of gluconeogenesis and the establishment of mitochondrial respiration. Previous studies reported hundreds of proteins and tens of metabolites accumulating differentially across the diauxic shift transition. To assess the differences in the protein-protein (PPIs) and protein-metabolite interactions (PMIs) yeast samples harvested in the glucose-utilizing, fermentative phase, ethanol-utilizing and early stationary respiratory phases were analysed using isothermal shift assay (iTSA) and a co-fractionation mass spectrometry approach, PROMIS.
View Article and Find Full Text PDFCo-fractionation mass spectrometry (CF-MS)-based approaches enable cell-wide identification of protein-protein and protein-metabolite complexes present in the cellular lysate. CF-MS combines biochemical separation of molecular complexes with an untargeted mass-spectrometry-based proteomics and/or metabolomics analysis of the obtained fractions, and is used to delineate putative interactors. CF-MS data are a treasure trove for biological discovery.
View Article and Find Full Text PDFIn contrast to climacteric fruits such as tomato, the knowledge on key regulatory genes controlling the ripening of strawberry, a nonclimacteric fruit, is still limited. NAC transcription factors (TFs) mediate different developmental processes in plants. Here, we identified and characterized Ripening Inducing Factor (FaRIF), a NAC TF that is highly expressed and induced in strawberry receptacles during ripening.
View Article and Find Full Text PDFProtein-metabolite interactions are of crucial importance for all cellular processes but remain understudied. Here, we applied a biochemical approach named PROMIS, to address the complexity of the protein-small molecule interactome in the model yeast Saccharomyces cerevisiae. By doing so, we provide a unique dataset, which can be queried for interactions between 74 small molecules and 3982 proteins using a user-friendly interface available at https://promis.
View Article and Find Full Text PDFPhenylpropanoids are a large class of plant secondary metabolites, which play essential roles in human health mainly associated with their antioxidant activity. Strawberry (Fragaria × ananassa) is a rich source of phytonutrients, including phenylpropanoids, which have been shown to have beneficial effects on human health. In this study, using the F.
View Article and Find Full Text PDFGrapes, one of the oldest agricultural crops, are cultivated to produce table fruits, dried fruits, juice, and wine. Grapevine variety is composed of clones that share common morphological traits. However, they can differ in minor genetic mutations which often result in not only notorious morphological changes but also in other non-visible sensorial distinctive attributes.
View Article and Find Full Text PDFThe strawberry fruit is perishable due to its high water content and soft texture, yet exhibits pleasant organoleptic and nutritional profile. Here we conducted a metabolomics-driven analysis followed by linear modelling to dissect the molecular processes in strawberry postharvest. Fruits from five cultivars were harvested and refrigerated during a ten-day period under three different atmospheres: ambient, CO-enriched and O-enriched.
View Article and Find Full Text PDFBackground: Type 2 diabetes, or T2D, is a metabolic disease that results in insulin resistance. In the present study, we hypothesize that metabolomic analysis in blood samples of T2D patients sharing the same ethnic background can recover new metabolic biomarkers and pathways that elucidate early diagnosis and predict the incidence of T2D.
Methods: The study included 34 T2D patients and 33 healthy volunteers recruited between the years 2012 and 2013; the secondary metabolites were extracted from blood samples and analyzed using HPLC.
FaMADS9 is the strawberry (Fragaria x ananassa) gene that exhibits the highest homology to the tomato (Solanum lycopersicum) RIN gene. Transgenic lines were obtained in which FaMADS9 was silenced. The fruits of these lines did not show differences in basic parameters, such as fruit firmness or colour, but exhibited lower Brix values in three of the four independent lines.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) is a common neurodevelopmental disorder with yet incompletely uncovered molecular determinants. Alterations in the abundance of low molecular weight compounds (metabolites) in ASD could add to our understanding of the disease. Indeed, such alterations take place in the urine, plasma and cerebellum of ASD individuals.
View Article and Find Full Text PDFNon-fermented teas, which are widely consumed in China, Japan, Korea, and elsewhere, have refreshing flavors and valuable health benefits. Various types of non-fermented teas look and taste similar and have no obvious differences in appearance, making their classification challenging. To date, there are very few reports about characterization and discrimination of different types of non-fermented teas.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFIt is generally recognized that many favorable genes which were lost during domestication, including those related to both nutritional value and stress resistance, remain hidden in wild relatives. To uncover such genes in teosinte, an ancestor of maize, we conducted metabolite profiling in a BC F population generated from a cross between the maize wild relative (Zea mays ssp. mexicana) and maize inbred line Mo17.
View Article and Find Full Text PDFHigh-throughput metabolomics technologies can provide the quantification of metabolites levels across various biological processes in different tissues, organs and species, allowing the identification of genes underpinning these complex traits. Information about changes of metabolites during strawberry development and ripening processes is key to aiding the development of new approaches to improve fruit attributes. We used network-based methods and multivariate statistical approaches to characterize and investigate variation in the primary and secondary metabolism of seven domesticated and seven wild strawberry fruit accessions at three different fruit development and ripening stages.
View Article and Find Full Text PDFLipids are essential to brain functions, yet they remain largely unexplored. Here we investigated the lipidome composition of prefrontal cortex gray matter in 396 cognitively healthy individuals with ages spanning 100 years, as well as 67 adult individuals diagnosed with autism (ASD), schizophrenia (SZ), and Down syndrome (DS). Of the 5024 detected lipids, 95% showed significant age-dependent concentration differences clustering into four temporal stages, and resulting in a gradual increase in membrane fluidity in individuals ranging from newborn to nonagenarian.
View Article and Find Full Text PDFSmall molecules not only represent cellular building blocks and metabolic intermediates, but also regulatory ligands and signaling molecules that interact with proteins. Although these interactions affect cellular metabolism, growth, and development, they have been largely understudied. Herein, we describe a method, which we named tein-etabolite nteractions using ize separation (PROMIS), that allows simultaneous, global analysis of endogenous protein-small molecule and of protein-protein complexes.
View Article and Find Full Text PDFMaize (Zea mays L.) is a staple food whose production relies on seed stocks that largely comprise hybrid varieties. Therefore, knowledge about the molecular determinants of hybrid performance (HP) in the field can be used to devise better performing hybrids to address the demands for sustainable increase in yield.
View Article and Find Full Text PDFMaize is the cereal crop with the highest production worldwide, and its oil is a key energy resource. Improving the quantity and quality of maize oil requires a better understanding of lipid metabolism. To predict the function of maize genes involved in lipid biosynthesis, we assembled transcriptomic and lipidomic data sets from leaves of B73 and the high-oil line By804 in two distinct time-series experiments.
View Article and Find Full Text PDFPrimary metabolism plays a pivotal role in normal plant growth, development and reproduction. As maize is a major crop worldwide, the primary metabolites produced by maize plants are of immense importance from both calorific and nutritional perspectives. Here a genome-wide association study (GWAS) of 61 primary metabolites using a maize association panel containing 513 inbred lines identified 153 significant loci associated with the level of these metabolites in four independent tissues.
View Article and Find Full Text PDFMetabolic genome-wide association studies (mGWAS), whereupon metabolite levels are regarded as traits, can help unravel the genetic basis of metabolic networks. A total of 309 Arabidopsis accessions were grown under two independent environmental conditions (control and stress) and subjected to untargeted LC-MS-based metabolomic profiling; levels of the obtained hydrophilic metabolites were used in GWAS. Our two-condition-based GWAS for more than 3000 semi-polar metabolites resulted in the detection of 123 highly resolved metabolite quantitative trait loci (p ≤ 1.
View Article and Find Full Text PDFComplementing genomic data with other "omics" predictors can increase the probability of success for predicting the best hybrid combinations using complex agronomic traits. Accurate prediction of traits with complex genetic architecture is crucial for selecting superior candidates in animal and plant breeding and for guiding decisions in personalized medicine. Whole-genome prediction has revolutionized these areas but has inherent limitations in incorporating intricate epistatic interactions.
View Article and Find Full Text PDFInteractions between metabolites and proteins play an integral role in all cellular functions. Here we describe an affinity purification (AP) approach in combination with LC/MS-based metabolomics and proteomics that allows, to our knowledge for the first time, analysis of protein-metabolite and protein-protein interactions simultaneously in plant systems. More specifically, we examined protein and small-molecule partners of the three (of five) nucleoside diphosphate kinases present in the Arabidopsis genome (NDPK1-NDPK3).
View Article and Find Full Text PDFIntroduction of durable resistance genes in crops is an important strategy to prevent yield loss caused by pathogens. The durable multi-pathogen resistance gene Lr34 originating from wheat is widely used in breeding, and is functionally transferable to barley and rice. The molecular resistance mechanism of Lr34, encoding for an adenosine triphosphate-binding cassette transporter, is not known yet.
View Article and Find Full Text PDF