We present a theoretical study of the intrusion of an ambient liquid into the pores of a nanocorrugated wall w. The pores are prefilled with a liquid lubricant that adheres to the walls of the pores more strongly than the ambient liquid does. The two liquids are modeled as a binary liquid mixture of two species of particles, A and B.
View Article and Find Full Text PDFA partially miscible binary liquid mixture, composed of A and B particles, is considered theoretically under conditions for which a stable A-rich liquid phase is in thermal equilibrium with the vapor phase. The B-rich liquid is metastable. The liquids and the thermodynamic conditions are chosen such that the interface between the A-rich liquid and the vapor contains an intervening wetting film of the B-rich phase.
View Article and Find Full Text PDFThe Cassie-Wenzel transition of a symmetric binary liquid mixture in contact with a nano-corrugated wall is studied. The corrugation consists of a periodic array of nanopits with square cross sections. The substrate potential is the sum over Lennard-Jones interactions, describing the pairwise interaction between the wall particles C and the fluid particles.
View Article and Find Full Text PDFHere, we investigate the complete drying of hydrophobic cavities in order to elucidate the dependence of drying on the size, the geometry, and the degree of hydrophobicity of the confinement. Two complementary theoretical approaches are adopted: a macroscopic one based on classical capillarity and a microscopic classical density functional theory. This combination allows us to pinpoint unique drying mechanisms at the nanoscale and to clearly differentiate them from the mechanisms operational at the macroscale.
View Article and Find Full Text PDFA liquid droplet placed on a geometrically textured surface may take on a "suspended" state, in which the liquid wets only the top of the surface structure, while the remaining geometrical features are occupied by vapor. This superhydrophobic Cassie-Baxter state is characterized by its composite interface which is intrinsically fragile and, if subjected to certain external perturbations, may collapse into the fully wet, so-called Wenzel state. Restoring the superhydrophobic Cassie-Baxter state requires a supply of free energy to the system in order to again nucleate the vapor.
View Article and Find Full Text PDFWetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2015
We present a density functional study of Lennard-Jones liquids in contact with a nanocorrugated wall. The corresponding substrate potential is taken to exhibit a repulsive hard core and a Van der Waals attraction. The corrugation is modeled by a periodic array of square nanopits.
View Article and Find Full Text PDF