We present a rigorous approach, based on the concept of continuous thermomajorization, to algorithmically characterize the full set of energy occupations of a quantum system accessible from a given initial state through weak interactions with a heat bath. The algorithm can be deployed to solve complex optimization problems in out-of-equilibrium setups and it returns explicit elementary control sequences realizing optimal transformations. We illustrate this by finding optimal protocols in the context of cooling, work extraction, and catalysis.
View Article and Find Full Text PDFPhys Rev Lett
November 2021
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations to a universal set by the addition of "magic" quantum states. In this context, we develop a general framework to discuss the value of the available, nonideal magic resources, relative to those ideally required. We single out a quantity, the quantum-assisted robustness of magic (QROM), which measures the overhead of simulating the ideal resource with the nonideal ones through quasiprobability-based methods.
View Article and Find Full Text PDFI identify a fundamental difference between classical and quantum dynamics in the linear response regime by showing that the latter is, in general, contextual. This allows me to provide an example of a quantum engine whose favorable power output scaling unavoidably requires nonclassical effects in the form of contextuality. Furthermore, I describe contextual advantages for local metrology.
View Article and Find Full Text PDFThe study of thermal operations allows one to investigate the ultimate possibilities of quantum states and of nanoscale thermal machines. Whilst fairly general, these results typically do not apply to continuous variable systems and do not take into account that, in many practically relevant settings, system-environment interactions are effectively bilinear. Here we tackle these issues by focusing on Gaussian quantum states and channels.
View Article and Find Full Text PDFRep Prog Phys
November 2019
I give a self-contained introduction to the resource theory approach to quantum thermodynamics. I will introduce in an elementary manner the technical machinery necessary to unpack and prove the core statements of the theory. The topics covered include the so-called 'many second laws of thermodynamics', thermo-majorisation and symmetry constraints on the evolution of quantum coherence.
View Article and Find Full Text PDFIn the presence of conservation laws, superpositions of eigenstates of the corresponding conserved quantities cannot be generated by quantum dynamics. Thus, any such coherence represents a potentially valuable resource of asymmetry, which can be used, for example, to enhance the precision of quantum metrology or to enable state transitions in quantum thermodynamics. Here we ask if such superpositions, already present in a reference system, can be broadcast to other systems, thereby distributing asymmetry indefinitely at the expense of creating correlations.
View Article and Find Full Text PDFPhys Rev Lett
January 2018
We discuss the role of contextuality within quantum fluctuation theorems, in the light of a recent no-go result by Perarnau-Llobet et al. We show that any fluctuation theorem reproducing the two-point-measurement scheme for classical states either admits a notion of work quasiprobability or fails to describe protocols exhibiting contextuality. Conversely, we describe a protocol that smoothly interpolates between the two-point-measurement work distribution for projective measurements and Allahverdyan's work quasiprobability for weak measurements, and show that the negativity of the latter is a direct signature of contextuality.
View Article and Find Full Text PDFIt is well known in thermodynamics that the creation of correlations costs work. It seems then a truism that if a thermodynamic transformation A→B is impossible, so will be any transformation that in sending A to B also correlates among them some auxiliary systems C. Surprisingly, we show that this is not the case for nonequilibrium thermodynamics of microscopic systems.
View Article and Find Full Text PDFRecent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones.
View Article and Find Full Text PDF