Publications by authors named "Losi P"

Background/objectives: Chronic skin wounds (CSWs) are a worldwide healthcare problem with relevant impacts on both patients and healthcare systems. In this context, innovative treatments are needed to improve tissue repair and patient recovery and quality of life. Cord blood platelet lysate (CB-PL) holds great promise in CSW treatment thanks to its high growth factors and signal molecule content.

View Article and Find Full Text PDF
Article Synopsis
  • Cord blood platelets, collected from non-suitable blood units for stem cell use, are rich in growth factors and may streamline the production of platelet lysate for wound healing applications.
  • The study analyzed the effects of pooled pathogen-reduced lyophilized cord blood platelet lysate (PRL-CBPL) and compared it with single donor cord blood platelet lysate (SD-CBPL) on various cell types essential for wound healing.
  • Results indicated that PRL-CBPL was effective for cell growth with optimal concentrations varying by cell type, while heparin enhanced the effects mainly in SD-CBPL, and both lysates increased monocyte migration in a dose-dependent manner.
View Article and Find Full Text PDF

In the past few years, due to the Covid-19 pandemic, the interest towards textiles with antimicrobial functionalities faced a significant boost. This study proposes a rapid and convenient method, in terms of reactants and equipment, for fabricating antimicrobial coatings on textiles. Through the electroless silver plating reaction, silver coatings were successfully applied on cotton and polyester, rapidly and at room temperature.

View Article and Find Full Text PDF

Face masks are essential in reducing the transmission of respiratory infections and bacterial filtration efficiency, a key parameter of mask performances, requires the use of Staphylococcus aureus and specialised staff. This study aims to develop a novel method for a preliminary screening of masks or materials filtration efficiency by a green, easy and rapid setup based on the use of a riboflavin solution, a safe autofluorescent biomolecule. The proposed setup is composed of a commercial aerosol generator commonly used for aerosol therapy, custom 3D printed aerosol chamber and sample holder, a filter for downstream riboflavin detection and a vacuum pump.

View Article and Find Full Text PDF

Face masks can filter droplets containing viruses and bacteria minimizing the transmission and spread of respiratory pathogens but are also an indirect source of microbes transmission. A novel antibacterial and antiviral Ag-coated polypropylene surgical mask obtained through the and one-step deposition of metallic silver nanoparticles, synthesized by silver mirror reaction combined with sonication or agitation methods, is proposed in this study. SEM analysis shows Ag nanoparticles fused together in a continuous and dense layer for the coating obtained by sonication, whereas individual Ag nanoparticles around 150 nm were obtained combining the silver mirror reaction with agitation.

View Article and Find Full Text PDF

Three-dimensional bioprinting has emerged as an attractive technology due to its ability to mimic native tissue architecture using different cell types and biomaterials. Nowadays, cell-laden bioink development or skin tissue equivalents are still at an early stage. The aim of the study is to propose a bioink to be used in skin bioprinting based on a blend of fibrinogen and alginate to form a hydrogel by enzymatic polymerization with thrombin and by ionic crosslinking with divalent calcium ions.

View Article and Find Full Text PDF

Electrospinning is an easy and versatile technique to obtain nanofibrous membranes with nanosized fibers, high porosity, and pore interconnectivity. Metal nanoparticles (e.g.

View Article and Find Full Text PDF

Marine organisms (i.e., fish, jellyfish, sponges or seaweeds) represent an abundant and eco-friendly source of collagen.

View Article and Find Full Text PDF

Treatment of chronic leg ulcers remains a major challenge and it is a substantial financial burden on individuals, families, caregivers, and health care system. There is increasing evidence on using of autologous Platelet-rich-plasma in wound repair but limited clinical data are available on the efficacy and safety of the use of umbilical cord blood platelet gel (CBPG). In our pilot study, for the first time, we aimed to evaluated the safety and efficacy of the use of umbilical CBPG combined with a hydrogel dressing in 10 patients with chronic venous ulcers (VU).

View Article and Find Full Text PDF

Face masks are an effective protection tool to prevent bacterial and viral transmission. However, commercial face masks contain filters made of materials that are not capable of inactivating either SARS-CoV-2. In this regard, we report the development of an antiviral coating of polyurethane and Copper nanoparticles on a face mask filter fabricated with a spray technology that is capable of inactivating more than 99% of SARS-CoV-2 particles in 30 min of contact.

View Article and Find Full Text PDF

Plasminogen is a protein involved in intravascular and extravascular fibrinolysis, as well as in wound healing, cell migration, tissue formation and angiogenesis. In recent years its role in healing of tympanic perforations has been demonstrated in plasminogen deficient mice. The aim of this work was to fabricate a fibrin-based drug delivery system able to provide a local and sustained release of plasminogen at the wound site.

View Article and Find Full Text PDF

The biocompatibility and chemical stability of implantable devices are crucial for their long-term success. CarboSil® is a silicon polycarbonate polyurethane copolymer with good biocompatibility and biostability properties. Here, we explored the possibility to improve these characteristics by introducing 30% of extra-chain cross-linkable poly(dimethyl siloxane) (PDMS).

View Article and Find Full Text PDF

The valve replacement therapy is the standard treatment for severe heart valve diseases. Nowadays, two types of commercial prosthesis are available: mechanical and biological, but both of them have severe limitations. Moreover, alternative therapeutic approach for valve replacement, based on minimally invasive techniques (MIAVR), motivates the search for new valve materials.

View Article and Find Full Text PDF

The present study examined the effects of a bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate by a combination of electrospinning and spray, phase-inversion method for wound healing. In particular, the poly(ether)urethane layer was obtained using by a spray phase-inversion method and the fibrin fibers network were loaded with platelet lysate by electrospinning. The kinetics release and the bioactivity of growth factors released from platelet lysate-scaffold were investigated by ELISA and cell proliferation test using mouse fibroblasts, respectively.

View Article and Find Full Text PDF

Fibrin is an optimal scaffold for tissue-engineering applications because it mimics the extracellular matrix. Despite this interesting feature, fibrin gel owns only poor mechanical properties that limit its applications. Different approaches have been used for fibrin electrospinning, however all the methods investigated required washing steps, cross-linking agent treatment or immersion.

View Article and Find Full Text PDF

Platelets contain abundant growth factors and cytokines that have a positive influence on the migration and proliferation of different cell types by modulating its physiopathological processes. As it is known that human umbilical cord blood platelet lysate (UCB-PL) contains a supraphysiological concentration of growth factors, in the present study, we investigated its effectiveness in wound-healing processes. Human UCB-PL was obtained by the freeze/thaw of platelet concentrate (1.

View Article and Find Full Text PDF

The development of small-caliber grafts still represents a challenge in the field of vascular prostheses. Among other factors, the mechanical properties mismatch between natural vessels and artificial devices limits the efficacy of state-of-the-art materials. In this paper, a novel nanocomposite graft with an internal diameter of 6 mm is proposed.

View Article and Find Full Text PDF

Highly porous small-diameter vascular grafts (SDVGs) prepared with elastomeric materials such as poly(ether urethane) (PEtU)-polydimethylsiloxane (PEtU-PDMS) are capable to biodegrade but may develop aneurismal dilatation. Through a compliance/patency assessment with ultrasound techniques, the current study investigated the functionality, in terms of patency and endothelialization, of a highly flexible and porous Nitinol mesh incorporated into PEtU-PDMS SDVGs in a sheep carotid model. Nitinol-PEtU-PDMS grafts with an internal diameter (ID) of 4 mm were manufactured by spray, phase-inversion technique.

View Article and Find Full Text PDF

The capacity of a composite vascular graft constituting polyurethane (PU) and gelatin to support cell growth was investigated using human mesenchymal stem cells (hMSCs). Gelatin-based polyurethane grafts were fabricated by co-spraying polyurethane and gelatin using a spray, phase-inversion technique. Graft microstructure was investigated by light and scanning electron microscopy.

View Article and Find Full Text PDF

Demineralized bone matrix (DBM) is widely used for bone regeneration. Since DBM is prepared in powder form its handling properties are not optimal and limit the clinical use of this material. Various synthetic and biological carriers have been used to enhance the DBM handling.

View Article and Find Full Text PDF

As the endothelium still represents the ideal surface for cardiovascular devices, different endothelialization strategies have been attempted for biocompatibility and nonthrombogenicity enhancement. Since endothelial progenitor cells (EPCs) could accelerate endothelialization, preventing thrombosis and restenosis, the aim of this study was to use oligonucleotides (ONs) to biofunctionalize stents for EPC binding. In order to optimize the functionalization procedure before its application to cobalt-chromium (Co/Cr) stents, discs of the same material were preliminarily used.

View Article and Find Full Text PDF

This paper reports on the preparation, characterization, and cytotoxicity of a hybrid nanocomposite material made of Sr(II)-loaded Halloysite nanotubes included within a biopolymer (3-polyhydroxybutyrate-co-3-hydroxyvalerate) matrix. The Sr(II)-loaded inorganic scaffold is intended to provide mechanical resistance, multi-scale porosity, and to favor the in-situ regeneration of bone tissue thanks to its biocompatibility and bioactivity. The interaction of the hybrid system with the physiological environment is mediated by the biopolymer coating, which acts as a binder, as well as a diffusional barrier to the Sr(II) release.

View Article and Find Full Text PDF

Autologous saphenous vein is still the conduit of choice for peripheral by-pass. Synthetic vascular grafts in polyethylene terephthalate and expanded polytetrafluoroethylene are used if vein access cannot be obtained. However they are successfully used to replace large diameter vessels, but they fail in small diameters (<6 mm).

View Article and Find Full Text PDF

Background: Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization).

Methodology/principal Findings: Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB).

View Article and Find Full Text PDF

Diabetic skin ulcers are difficult to heal spontaneously due to the reduced levels and activity of endogenous growth factors. Recombinant human vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are known to stimulate cell proliferation and accelerate wound healing. Direct delivery of VEGF and bFGF at the wound site in a sustained and controllable way without loss of bioactivity would enhance their biological effects.

View Article and Find Full Text PDF