The diuretic bumetanide, which acts by blocking the Na-K-Cl cotransporter (NKCC), is widely used to inhibit neuronal NKCC1, particularly when NKCC1 expression is abnormally increased in brain diseases such as epilepsy. However, bumetanide poorly penetrates into the brain and, in rodents, is rapidly eliminated because of extensive oxidation of its N-butyl sidechain, reducing the translational value of rodent experiments. Inhibition of oxidation by piperonyl butoxide (PBO) has previously been reported to increase the half-life and diuretic activity of bumetanide in rats.
View Article and Find Full Text PDFIntroduction: Polyarteritis nodosa (PAN) is a necrotizing vasculitis of small to-medium-sized vessels, rarely associated with hematologic neoplasms.
Case Report: We report a 44-year-old man with a history of monoclonal gammopathy of undetermined significance (MGUS) who presented with rapidly progressing sensorimotor peripheral neuropathy. Two weeks after onset the patient developed severe acute acral and retinal ischemia.
The 6-Hz psychomotor seizure model in mice is increasingly been used as a model for differentiation of anticonvulsant activity during development of new antiepileptic drugs (AEDs). It was previously proposed as a useful model of AED-resistant seizures, but more recent data have cast doubt on this proposal. The aim of the present study was to determine whether performing the 6-Hz test not in normal but epileptic mice renders the 6-Hz test more resistant to AEDs.
View Article and Find Full Text PDFBackground: In human medicine, adverse outcomes associated with switching between bioequivalent brand name and generic antiepileptic drug products is a subject of concern among clinicians. In veterinary medicine, epilepsy in dogs is usually treated with phenobarbital, either with the standard brand name formulation Luminal(®) or the veterinary products Luminal(®) vet and the generic formulation Phenoleptil(®). Luminal(®) and Luminal(®) vet are identical 100 mg tablet formulations, while Phenoleptil(®) is available in the form of 12.
View Article and Find Full Text PDFRecently, the imidazolinone derivative imepitoin has been approved for treatment of canine epilepsy. Imepitoin acts as a low-affinity partial agonist at the benzodiazepine (BZD) site of the GABAA receptor and is the first compound with such mechanism that has been developed as an antiepileptic drug (AED). This mechanism offers several advantages compared to full agonists, including less severe adverse effects and a lack of tolerance and dependence liability, which has been demonstrated in rodents, dogs, and nonhuman primates.
View Article and Find Full Text PDFWe studied whether pharmacological blockade of the IL-1β-mediated signaling, rapidly activated in forebrain by epileptogenic injuries, affords neuroprotection in two different rat models of status epilepticus (SE). As secondary outcome, we measured treatment's effect on SE-induced epileptogenesis. IL-1β signaling was blocked by systemic administration of two antiinflammatory drugs, namely human recombinant IL-1 receptor antagonist (anakinra), the naturally occurring and clinically used competitive IL-1 receptor type 1 antagonist, and VX-765 a specific non-peptide inhibitor of IL-1β cleavage and release.
View Article and Find Full Text PDFSeveral preclinical proof-of-concept studies have provided evidence for positive treatment effects on epileptogenesis. However, none of these hypothetical treatments has advanced to the clinic. The experience in other fields of neurology such as stroke, Alzheimer's disease, or amyotrophic lateral sclerosis has indicated several problems in the design of preclinical studies, which likely contribute to failures in translating the positive preclinical data to the clinic.
View Article and Find Full Text PDFIntroduction: Positron emission tomography (PET) with [(11)C]verapamil, either in racemic form or in form of the (R)-enantiomer, has been used to measure the functional activity of the adenosine triphosphate-binding cassette (ABC) transporter P-glycoprotein (Pgp) at the blood-brain barrier (BBB). There is some evidence in literature that verapamil inhibits two other ABC transporters expressed at the BBB, i.e.
View Article and Find Full Text PDFIntroduction: The adenosine triphosphate-binding cassette (ABC) transporter P-glycoprotein (Pgp) protects the brain from accumulation of lipophilic compounds by active efflux transport across the blood-brain barrier. Changes in Pgp function/expression may occur in neurological disorders, such as epilepsy, Alzheimer's or Parkinson's disease. In this work we investigated the suitability of the radiolabeled Pgp inhibitors [(11)C]elacridar and [(11)C]tariquidar to visualize Pgp density in rat brain with PET.
View Article and Find Full Text PDFIntroduction: Posterior interosseous nerve (PIN) syndrome is a rare compression neuropathy of the PIN in the region of the supinator muscle, most common by the arcade of Frohse. We aimed to specify ultrasonographic findings in patients with PIN syndrome in comparison to healthy volunteers.
Methods: Ultrasound images and clinical data of 13 patients with PIN syndrome confirmed by neurological examination and electrophysiological testing were evaluated retrospectively.
Background And Purpose: Little is known about the natural history of non-traumatic compressive mononeuropathies. To improve patient management, prognostic factors and outcome in patients with non-traumatic peroneal and radial mononeuropathies were studied.
Methods: Retrospective clinical, electrophysiological and sonographic data of patients with non-traumatic peroneal and radial mononeuropathies were evaluated.
Elacridar (ELC) and tariquidar (TQD) are generally thought to be nontransported inhibitors of P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP), but recent data indicate that they may also be substrates of these multidrug transporters (MDTs). The present study was designed to investigate potential transport of ELC and TQD by MDTs at the blood-brain barrier at tracer doses as used in positron emission tomography (PET) studies. We performed PET scans with carbon-11-labeled ELC and TQD before and after MDT inhibition in wild-type and transporter-knockout mice as well as in in vitro transport assays in MDT-overexpressing cells.
View Article and Find Full Text PDFPurpose: In humans, traumatic brain injury (TBI) is one of the most common causes of acquired (symptomatic) epilepsy, but as yet there is no treatment to prevent the development of epilepsy after TBI. Animal models of posttraumatic epilepsy (PTE) are important to characterize epileptogenic mechanisms of TBI and to identify clinically effective antiepileptogenic treatments. The prevalence and phenomenology of naturally occurring canine epilepsy are similar to those in human epilepsy.
View Article and Find Full Text PDFObjectives: Hirayama disease (HD) is a segmental cervical myelopathy which affects the C7-D1 myotomes and presents with unilateral or asymmetric upper limb weakness/wasting. The study aimed at systematically collecting cases of HD in Austria and at describing and discussing their presentation on clinical and instrumental investigations and at comparing them with cases reported from other countries.
Methods: Neurological Departments of secondary and tertiary centers and colleagues in outpatient units involved in the management of neuromuscular disorders in Austria were contacted and asked to provide standardised data about their HD cases.
The barbiturate phenobarbital has been in use in the treatment of epilepsy for 100 years. It has long been recognized that barbiturates act by prolonging and potentiating the action of γ-aminobutyric acid (GABA) on GABA(A) receptors and at higher concentrations directly activating the receptors. A large body of data supports the concept that GABA(A) receptors are the primary central nervous system target for barbiturates, including the finding that transgenic mice with a point mutation in the β3 GABA(A) -receptor subunit exhibit diminished sensitivity to the sedative and immobilizing actions of the anesthetic barbiturate pentobarbital.
View Article and Find Full Text PDFSystemic or intracerebral (e.g., intrahippocampal or intraamygdalar) administration of kainate, a potent neurotoxic analog of glutamate, is widely used to induce status epilepticus (SE) and subsequent development of epilepsy in rats.
View Article and Find Full Text PDFNeural transplantation of GABA-producing cells into key structures within seizure-suppressing circuits holds promise for medication-resistant epilepsy patients not eligible for resection of the epileptic focus. The substantia nigra pars reticulata (SNr), a basal ganglia output structure, is well known to modulate different seizure types. A recent microinjection study by our group indicated that the subthalamic nucleus (STN), which critically regulates nigral activity, might be a more promising target for focal therapy in epilepsies than the SNr.
View Article and Find Full Text PDFFor several decades, both in vitro and in vivo models of seizures and epilepsy have been employed to unravel the molecular and cellular mechanisms underlying the occurrence of spontaneous recurrent seizures (SRS)-the defining hallmark of the epileptic brain. However, despite great advances in our understanding of seizure genesis, investigators have yet to develop reliable biomarkers and surrogate markers of the epileptogenic process. Sadly, the pathogenic mechanisms that produce the epileptic condition, especially after precipitating events such as head trauma, inflammation, or prolonged febrile convulsions, are poorly understood.
View Article and Find Full Text PDFInherited peripheral neuropathies are frequent neuromuscular disorders known for their clinical and genetic heterogeneity. In 33 families, we identified 8 mutations in HINT1 (encoding histidine triad nucleotide-binding protein 1) by combining linkage analyses with next-generation sequencing and subsequent cohort screening of affected individuals. Our study provides evidence that loss of functional HINT1 protein results in a distinct phenotype of autosomal recessive axonal neuropathy with neuromyotonia.
View Article and Find Full Text PDFBreast cancer resistance protein (BCRP) is the most abundant multidrug efflux transporter at the human blood-brain barrier (BBB), restricting brain distribution of various drugs. In this study, we developed a positron emission tomography (PET) protocol to visualize Bcrp function at the murine BBB, based on the dual P-glycoprotein (P-gp)/Bcrp substrate radiotracer [(11)C]tariquidar in combination with the Bcrp inhibitor Ko143. To eliminate the contribution of P-gp efflux to [(11)C]tariquidar brain distribution, we studied mice in which P-gp was genetically knocked out (Mdr1a/b((-/-)) mice) or chemically knocked out by pretreatment with cold tariquidar.
View Article and Find Full Text PDFFriedreich ataxia (FRDA) is caused by reduced expression of the mitochondrial protein frataxin. Cardiac muscle involvement has been attributed to mitochondrial dysfunction, but involvement of skeletal muscle has not been fully investigated. Improved motor skills in FRDA patients after administration of recombinant human erythropoietin (rhuEPO) have been reported.
View Article and Find Full Text PDF